| Citation: | LIU Weiquan, SHEN Xiaoying, LIU Dunqiang, SUN Yanwen, CAI Guorong, ZANG Yu, SHEN Siqi, WANG Cheng. Adversarial Attacks on 3D Target Recognition Driven by Gradient Adaptive Adjustment[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251264 |
| [1] |
LIU Weiquan, XIE Min, HUANG Xingwang, et al. Generating transferable traffic object adversarial 3D point clouds via momentum-based decompose perturbation[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2025, X-1/W2-2025: 83–89. doi: 10.5194/isprs-annals-X-1-W2-2025-83-2025.
|
| [2] |
CAO Yulong, XIAO Chaowei, CYR B, et al. Adversarial sensor attack on LiDAR-based perception in autonomous driving[C]. Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, New York, USA, 2019: 2267–2281. doi: 10.1145/3319535.3339815.
|
| [3] |
ZHENG Shijun, LIU Weiquan, GUO Yu, et al. A new adversarial perspective for LiDAR-based 3D object detection[C]. Proceedings of the 39th AAAI Conference on Artificial Intelligence), Philadelphia, USA, 2025: 10608–10616. doi: 10.1609/aaai.v39i10.33152.
|
| [4] |
吴涛, 纪琼辉, 先兴平, 等. 信息熵驱动的图神经网络黑盒迁移对抗攻击方法[J]. 电子与信息学报, 2025, 47(10): 3814–3825. doi: 10.11999/JEIT250303.
WU Tao, JI Qionghui, XIAN Xingping, et al. Information entropy-driven black-box transferable adversarial attack method for graph neural networks[J]. Journal of Electronics & Information Technology, 2025, 47(10): 3814–3825. doi: 10.11999/JEIT250303.
|
| [5] |
刘伟权, 郑世均, 郭宇, 等. 三维点云目标识别对抗攻击研究综述[J]. 电子与信息学报, 2024, 46(5): 1645–1657. doi: 10.11999/JEIT231188.
LIU Weiquan, ZHENG Shijun, GUO Yu, et al. A survey of adversarial attacks on 3D point cloud object recognition[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1645–1657. doi: 10.11999/JEIT231188.
|
| [6] |
LIU D, YU R, and SU Hao. Extending adversarial attacks and defenses to deep 3D point cloud classifiers[C]. 2019 IEEE International Conference on Image Processing (ICIP), Taipei, China, 2019: 2279–2283. doi: 10.1109/ICIP.2019.8803770.
|
| [7] |
DONG Xiaoyi, CHEN Dongdong, ZHOU Hang, et al. Self-robust 3D point recognition via gather-vector guidance[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 11513–11521. doi: 10.1109/CVPR42600.2020.01153.
|
| [8] |
XIANG Chong, QI C R, and LI Bo. Generating 3D adversarial point clouds[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 9128–9136. doi: 10.1109/CVPR.2019.00935. (查阅网上资料,不确定标黄作者拼写是否正确,请确认).
|
| [9] |
GUO Yu, LIU Weiquan, XU Qingshan, et al. Boosting adversarial transferability through augmentation in hypothesis space[C]. 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2025: 19175–19185. doi: 10.1109/CVPR52734.2025.01786.
|
| [10] |
KIM J, HUA B S, NGUYEN D T, et al. Minimal adversarial examples for deep learning on 3D point clouds[C]. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Canada, 2021: 7777–7786. doi: 10.1109/ICCV48922.2021.00770.
|
| [11] |
ZHENG Tianhang, CHEN Changyou, YUAN Junsong, et al. PointCloud saliency maps[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 1598–1606. doi: 10.1109/ICCV.2019.00168.
|
| [12] |
ZHENG Shijun, LIU Weiquan, GUO Yu, et al. SR-Adv: Salient region adversarial attacks on 3D point clouds for autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(10): 14019–14030. doi: 10.1109/TITS.2024.3406153.
|
| [13] |
ZHANG Jianping, GU Wenwei, HUANG Yizhan, et al. Curvature-invariant adversarial attacks for 3D point clouds[C]. Proceedings of the 38th AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2024: 7142–7150. doi: 10.1609/aaai.v38i7.28542.
|
| [14] |
ZHANG Zihao, SANG Nan, WANG Xupeng, et al. SC-Net: Salient point and curvature based adversarial point cloud generation network[C]. ICASSP 2023 – IEEE International Conference on Acoustics, Speech and Signal Processing, Rhodes Island, Greece, 2023: 1–5. doi: 10.1109/ICASSP49357.2023.10094878.
|
| [15] |
钱亚冠, 孔亚鑫, 陈科成, 等. 利用频谱衰减增强深度神经网络对抗迁移攻击[J]. 电子与信息学报, 2025, 47(10): 3847–3857. doi: 10.11999/JEIT250157.
QIAN Yaguan, KONG Yaxin, CHEN Kecheng, et al. Adversarial transferability attack on deep neural networks through spectral coefficient decay[J]. Journal of Electronics & Information Technology, 2025, 47(10): 3847–3857. doi: 10.11999/JEIT250157.
|
| [16] |
KUHN H W. Classics in Game Theory[M]. Princeton: Princeton University Press, 1997. doi: 10.2307/j.ctv173f1fh. (查阅网上资料,未找到本条文献页码信息,请补充).
|
| [17] |
LIU Weiquan, LIU Minghao, ZHENG Shijun, et al. Interpreting hidden semantics in the intermediate layers of 3D point cloud classification neural network[J]. IEEE Transactions on Multimedia, 2025, 27: 965–977. doi: 10.1109/TMM.2023.3345147.
|
| [18] |
CARLINI N and WAGNER D. Towards evaluating the robustness of neural networks[C]. 2017 IEEE Symposium on Security and Privacy, San Jose, USA, 2017: 39–57. doi: 10.1109/SP.2017.49.
|
| [19] |
WU Zhirong, SONG Shuran, KHOSLA A, et al. 3D ShapeNets: A deep representation for volumetric shapes[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 1912–1920. doi: 10.1109/CVPR.2015.7298801.
|
| [20] |
CHANG A X, FUNKHOUSER T, GUIBAS L, et al. ShapeNet: An information-rich 3D model repository[J]. arXiv preprint arXiv: 1512.03012, 2015. doi: 10.48550/arXiv.1512.03012. (查阅网上资料,不确定本条文献类型及格式是否正确,请确认).
|
| [21] |
GEIGER A, LENZ P, and URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 3354–3361. doi: 10.1109/CVPR.2012.6248074.
|
| [22] |
QI C R, SU Hao, KAICHUN M, et al. PointNet: Deep learning on point sets for 3D classification and segmentation[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 77–85. doi: 10.1109/CVPR.2017.16. (查阅网上资料,不确定标黄作者拼写是否正确,请确认).
|
| [23] |
WANG Yue, SUN Yongbin, LIU Ziwei, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics (TOG), 2019, 38(5): 146. doi: 10.1145/3326362.
|
| [24] |
WU Wenxuan, QI Zhongang, and LI Fuxin. PointConv: Deep convolutional networks on 3D point clouds[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 9613–9622. doi: 10.1109/CVPR.2019.00985. (查阅网上资料,不确定标黄作者拼写是否正确,请确认).
|
| [25] |
LIU D, YU R, and SU Hao. Adversarial shape perturbations on 3D point clouds[C]. European Conference on Computer Vision, Glasgow, UK, 2020: 88–104. doi: 10.1007/978-3-030-66415-2_6.
|
| [26] |
WICKER M and KWIATKOWSKA M. Robustness of 3D deep learning in an adversarial setting[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 11759–11767. doi: 10.1109/CVPR.2019.01204.
|
| [27] |
ZHENG Shijun, LIU Weiquan, SHEN Siqi, et al. Adaptive local adversarial attacks on 3D point clouds[J]. Pattern Recognition, 2023, 144: 109825. doi: 10.1016/j.patcog.2023.109825.
|
| [28] |
陈卓, 江辉, 周杨. 一种面向联邦学习对抗攻击的选择性防御策略[J]. 电子与信息学报, 2024, 46(3): 1119–1127. doi: 10.11999/JEIT230137.
CHEN Zhuo, JIANG Hui, and ZHOU Yang. A selective defense strategy for federated learning against attacks[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1119–1127. doi: 10.11999/JEIT230137.
|