Advanced Search
Turn off MathJax
Article Contents
CHEN Yuechi, HUA Chengcheng, DAI Zhian, FU Jingqi, ZHU Min, WANG Qiuyu, YAN Ying, LIU Jia. Wavelet Transform and Attentional Dual-Path EEG Model for Virtual Reality Motion Sickness Detection[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251233
Citation: CHEN Yuechi, HUA Chengcheng, DAI Zhian, FU Jingqi, ZHU Min, WANG Qiuyu, YAN Ying, LIU Jia. Wavelet Transform and Attentional Dual-Path EEG Model for Virtual Reality Motion Sickness Detection[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251233

Wavelet Transform and Attentional Dual-Path EEG Model for Virtual Reality Motion Sickness Detection

doi: 10.11999/JEIT251233 cstr: 32379.14.JEIT251233
Funds:  The National Natural Science Foundation of China (62206130), The Natural Science Foundation of Jiangsu Province (BK20200821), The Startup Foundation for Introducing Talent of NUIST (2020r075)
  • Accepted Date: 2026-01-12
  • Rev Recd Date: 2026-01-12
  • Available Online: 2026-01-24
  •   Objective  Virtual Reality Motion Sickness (VRMS) poses a significant challenge to the widespread adoption of immersive Virtual Reality (VR) technologies, and this symptom primarily caused by sensory conflict between the vestibular and visual systems. Current assessment methods largely rely on subjective reports, which interrupt the experience and lack real-time capability. To address this, an objective and direct detection method is needed. This paper proposes a novel dual-path fusion model, the Wavelet Transform Attentional Network (WTATNet), which combines wavelet transform and attention mechanisms. The objective is to achieve the classification of the resting-state Electroencephalograph (EEG) signals collected before and after the VR motion stimulus exposure, thereby providing a robust tool for VRMS detection and facilitating further research into its causes and mitigation strategies.  Methods  The proposed WTATNet model consists of two parallel pathways for feature extraction from EEG signals. The first pathway employs a two-dimensional Discrete Wavelet Transform (2D-DWT) applied simultaneously to the time and electrode dimensions of the EEG, which is reshaped into a 2D matrix based on the spatial layout of the scalp electrodes (using both horizontal or vertical arrangements). This process decomposes the signal to capture multi-scale spatiotemporal features. The resulting wavelet coefficients are then fed into Convolutional Neural Network (CNN) layers for further feature extraction. The second pathway processes the EEG through a one-dimensional CNN layer for initial filtering, followed by a dual-attention mechanism comprising a channel attention module and an electrode attention module. These modules dynamically recalibrate the importance of features in the channel and electrode dimensions, respectively, enhancing the model's focus on task-relevant information. Finally, features from both pathways are fused and passed through the fully connected layers for classification into pre-exposure (non-VRMS) and post-exposure (VRMS) states according to the subjective questionnaire results validation. The model was trained and evaluated using a ten-fold cross-validation on the dataset collected from 22 subjects exposed to VRMS via the game "Ultrawings2," with performance assessed using accuracy, precision, recall, and F1-score.  Results and Discussions  The WTATNet model demonstrated superior performance in classifying VRMS-related EEGs. It achieved an average accuracy of 98.39%, F1-score of 98.39%, precision of 98.38%, and recall of 98.40% outperforming the several classical and state-of-the-art EEG models such as ShallowConvNet, EEGNet, Conformer, and FBCNet (Table 2). The ablation studies (Tables 3 & 4) confirmed the contribution of each component: the wavelet transform path, the electrode attention module, or the channel attention module led to performance drops of 1.78%, 1.36%, and 1.01% in accuracy, respectively, highlighting their importance. The 2D-DWT proved significantly more effective than the 1D-DWT in the proposed model, underscoring the value of joint spatiotemporal analysis. Furthermore, the experiments with randomized electrode ordering (Table 5) resulted in markedly lower performance compared to using spatially coherent layouts (horizontal/vertical), validating that the 2D-DWT effectively leverages the intrinsic spatial correlations among scalp electrodes. The visualizations of the extracted features using t-SNE (Figures. 5 & 6) showed that WTATNet learned more discriminative features compared to baseline and ablated models.  Conclusions  This proposed dual-path hybrid model, WTATNet, integrates wavelet transform and attention mechanisms for highly accurate VRMS detection using the resting-state EEG. The model effectively combines the interpretable, multi-scale spatiotemporal features from 2D-DWT with the adaptive feature weighting abilities of the channel and electrode attentions. The experimental results demonstrate that WTATNet achieves a state-of-the-art performance, offering an objective, robust, and non-intrusive method for detecting VRMS. This approach not only holds immediate application for assessing user comfort in VR but also provides a valuable tool and technical pathway for investigating the underlying neural mechanisms of VRMS and developing the countermeasures. Furthermore, the WTATNet framework shows promising potential for generalization to other EEG decoding tasks in neuroscience and clinical medicine.
  • loading
  • [1]
    LIU Ran, XU Miao, ZHANG Yanzhen, et al. A pilot study on electroencephalogram-based evaluation of visually induced motion sickness[J]. Journal of Imaging Science and Technology, 2020, 64(2): 020501. doi: 10.2352/J.ImagingSci.Technol.2020.64.2.020501.
    [2]
    LIANG Tie, HONG Lei, XIAO Jinzhuang, et al. Directed network analysis reveals changes in cortical and muscular connectivity caused by different standing balance tasks[J]. Journal of Neural Engineering, 2022, 19(4): 046021. doi: 10.1088/1741-2552/ac7d0c.
    [3]
    KENNEDY R S, DREXLER J, and KENNEDY R C. Research in visually induced motion sickness[J]. Applied Ergonomics, 2010, 41(4): 494–503. doi: 10.1016/j.apergo.2009.11.006.
    [4]
    顾展滔, 丁玎, 陈亦婷, 等. 面向虚拟现实晕动症的评估与缓解方法[J]. 浙江大学学报: 理学版, 2025, 52(1): 30–37. doi: 10.3785/j.issn.1008-9497.2025.01.004.

    GU Zhantao, DING Ding, CHEN Yiting, et al. Evaluation and mitigation methods for virtual reality motion sickness[J]. Journal of Zhejiang University: Science Edition, 2025, 52(1): 30–37. doi: 10.3785/j.issn.1008-9497.2025.01.004.
    [5]
    GOLDING J F. Motion sickness susceptibility[J]. Autonomic Neuroscience, 2006, 129(1/2): 67–76. doi: 10.1016/j.autneu.2006.07.019.
    [6]
    蔡力, 翁冬冬, 张振亮, 等. 虚实运动一致性对虚拟现实晕动症的影响[J]. 系统仿真学报, 2016, 28(9): 1950–1956. doi: 10.16182/j.cnki.joss.2016.09.004.

    CAI Li, WENG Dongdong, ZHANG Zhenliang, et al. Impact of consistency between visually perceived movement and real movement on cybersickness[J]. Journal of System Simulation, 2016, 28(9): 1950–1956. doi: 10.16182/j.cnki.joss.2016.09.004.
    [7]
    MITTELSTAEDT J M. Individual predictors of the susceptibility for motion-related sickness: A systematic review[J]. Journal of Vestibular Research, 2020, 30(3): 165–193. doi: 10.3233/ves-200702.
    [8]
    徐子超, 张玲, 肖水凤, 等. 晕动症机制及防治技术研究进展与展望[J]. 海军军医大学学报, 2024, 45(8): 923–928. doi: 10.16781/j.CN31-2187/R.20240056.

    XU Zichao, ZHANG Ling, XIAO Shuifeng, et al. Motion sickness mechanism and control techniques: Research progress and prospect[J]. Academic Journal of Naval Medical University, 2024, 45(8): 923–928. doi: 10.16781/j.CN31-2187/R.20240056.
    [9]
    蔡永青, 韩成, 权巍, 等. 基于注意力机制的视觉诱导晕动症评估模型[J]. 浙江大学学报: 工学版, 2025, 59(6): 1110–1118. doi: 10.3785/j.issn.1008-973X.2025.06.002.

    CAI Yongqing, HAN Cheng, QUAN Wei, et al. Visual induced motion sickness estimation model based on attention mechanism[J]. Journal of Zhejiang University: Engineering Science, 2025, 59(6): 1110–1118. doi: 10.3785/j.issn.1008-973X.2025.06.002.
    [10]
    FENG Naishi, ZHOU Bin, ZHANG Qianqian, et al. A comprehensive exploration of motion sickness process analysis from EEG signal and virtual reality[J]. Computer Methods and Programs in Biomedicine, 2025, 264: 108714. doi: 10.1016/j.cmpb.2025.108714.
    [11]
    CAI Mengpu, CHEN Junxiang, HUA Chengcheng, et al. EEG emotion recognition using EEG-SWTNS neural network through EEG spectral image[J]. Information Sciences, 2024, 680: 121198. doi: 10.1016/j.ins.2024.121198.
    [12]
    CHAUDARY E, KHAN S A, and MUMTAZ W. EEG-CNN-souping: Interpretable emotion recognition from EEG signals using EEG-CNN-souping model and explainable AI[J]. Computers and Electrical Engineering, 2025, 123: 110189. doi: 10.1016/j.compeleceng.2025.110189.
    [13]
    MEISER A, LENA KNOLL A, and BLEICHNER M G. High-density ear-EEG for understanding ear-centered EEG[J]. Journal of Neural Engineering, 2024, 21(1): 016001. doi: 10.1088/1741-2552/ad1783.
    [14]
    LIAO C Y, TAI S K, CHEN R C, et al. Using EEG and deep learning to predict motion sickness under wearing a virtual reality device[J]. IEEE Access, 2020, 8: 126784–126796. doi: 10.1109/access.2020.3008165.
    [15]
    韩敏, 孙磊磊, 洪晓军. 基于回声状态网络的脑电信号特征提取[J]. 生物医学工程学杂志, 2012, 29(2): 206–211.

    HAN Min, SUN Leilei, and HONG Xiaojun. Extraction of the EEG signal feature based on echo state networks[J]. Journal of Biomedical Engineering, 2012, 29(2): 206–211.
    [16]
    张成, 汤璇, 杨冬平, 等. 基于深度学习的脑电信号特征检测方法[J]. 电子设计工程, 2024, 32(15): 156–160. doi: 10.14022/j.issn1674-6236.2024.15.033.

    ZHANG Cheng, TANG Xuan, YANG Dongping, et al. Method for EEG signal feature detection based on deep learning[J]. Electronic Design Engineering, 2024, 32(15): 156–160. doi: 10.14022/j.issn1674-6236.2024.15.033.
    [17]
    DAS A, SINGH S, KIM J, et al. Enhanced EEG signal classification in brain computer interfaces using hybrid deep learning models[J]. Scientific Reports, 2025, 15(1): 27161. doi: 10.1038/s41598-025-07427-2.
    [18]
    RAPARTHI M, MITTA N R, DUNKA V K, et al. Deep learning model for patient emotion recognition using EEG-tNIRS data[J]. Neuroscience Informatics, 2025, 5(3): 100219. doi: 10.1016/j.neuri.2025.100219.
    [19]
    GUO Xiang, LIANG Ruiqi, XU Shule, et al. An investigation of echo state network for EEG-based emotion recognition with deep neural networks[J]. Biomedical Signal Processing and Control, 2026, 111: 108342. doi: 10.1016/j.bspc.2025.108342.
    [20]
    CHEN He, SONG Yan, and LI Xiaoli. A deep learning framework for identifying children with ADHD using an EEG-based brain network[J]. Neurocomputing, 2019, 356: 83–96. doi: 10.1016/j.neucom.2019.04.058.
    [21]
    WANG Teng, HUANG Xiaoqiao, XIAO Zenan, et al. EEG emotion recognition based on differential entropy feature matrix through 2D-CNN-LSTM network[J]. EURASIP Journal on Advances in Signal Processing, 2024, 2024(1): 49. doi: 10.1186/s13634-024-01146-y.
    [22]
    王春丽, 李金絮, 高玉鑫, 等. 一种基于时空频多维特征的短时窗口脑电听觉注意解码网络[J]. 电子与信息学报, 2025, 47(3): 814–824. doi: 10.11999/JEIT240867.

    WANG Chunli, LI Jinxu, GAO Yuxin, et al. A short-time window electroencephalogram auditory attention decoding network based on multi-dimensional characteristics of temporal-spatial-frequency[J]. Journal of Electronics & Information Technology, 2025, 47(3): 814–824. doi: 10.11999/JEIT240867.
    [23]
    DHONGADE D, CAPTAIN K, and DAHIYA S. EEG-based schizophrenia detection: Integrating discrete wavelet transform and deep learning[J]. Cognitive Neurodynamics, 2025, 19(1): 62. doi: 10.1007/s11571-025-10248-8.
    [24]
    MINHAS R, PEKER N Y, HAKKOZ M A, et al. Improved drowsiness detection in drivers through optimum pairing of EEG features using an optimal EEG channel comparable to a multichannel EEG system[J]. Medical & Biological Engineering & Computing, 2025, 63(10): 3019–3036. doi: 10.1007/s11517-025-03375-1.
    [25]
    SHEN Mingkan, WEN Peng, SONG Bo, et al. An EEG based real-time epilepsy seizure detection approach using discrete wavelet transform and machine learning methods[J]. Biomedical Signal Processing and Control, 2022, 77: 103820. doi: 10.1016/j.bspc.2022.103820.
    [26]
    WEN Dong, JIAO Wenlong, LI Xiaoling, et al. The EEG signals steganography based on wavelet packet transform-singular value decomposition-logistic[J]. Information Sciences, 2024, 679: 121006. doi: 10.1016/j.ins.2024.121006.
    [27]
    QIN Yuxin, LI Baojiang, WANG Wenlong, et al. ETCNet: An EEG-based motor imagery classification model combining efficient channel attention and temporal convolutional network[J]. Brain Research, 2024, 1823: 148673. doi: 10.1016/j.brainres.2023.148673.
    [28]
    ZHOU Kai, HAIMUDULA A, and TANG Wanying. Dual-branch convolution network with efficient channel attention for EEG-based motor imagery classification[J]. IEEE Access, 2024, 12: 74930–74943. doi: 10.1109/access.2024.3404634.
    [29]
    KIEU H D. Graph attention network for motor imagery classification[C]. 2024 RIVF International Conference on Computing and Communication Technologies (RIVF), Danang, Vietnam, 2024: 255–260. doi: 10.1109/RIVF64335.2024.11009062.
    [30]
    LENG Jiancai, GAO Licai, JIANG Xiuquan, et al. A multi‐feature fusion graph attention network for decoding motor imagery intention in spinal cord injury patients[J]. Journal of Neural Engineering, 2024, 21(6): 066044. doi: 10.1088/1741-2552/ad9403.
    [31]
    化成城, 周占峰, 陶建龙, 等. 导联注意力及脑连接驱动的虚拟现实晕动症识别模型研究[J]. 电子与信息学报, 2025, 47(4): 1161–1171. doi: 10.11999/JEIT240440.

    HUA Chengcheng, ZHOU Zhanfeng, TAO Jianlong, et al. Virtual reality motion sickness recognition model driven by lead-attention and brain connection[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1161–1171. doi: 10.11999/JEIT240440.
    [32]
    PAN Junting, SAYROL E, GIRO-I-NIETO X, et al. Shallow and deep convolutional networks for saliency prediction[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 598–606. doi: 10.1109/CVPR.2016.71.
    [33]
    ALI O, SAIF-UR-REHMAN M, GLASMACHERS T, et al. ConTraNet: A hybrid network for improving the classification of EEG and EMG signals with limited training data[J]. Computers in Biology and Medicine, 2024, 168: 107649. doi: 10.1016/j.compbiomed.2023.107649.
    [34]
    SONG Yonghao, ZHENG Qingqing, LIU Bingchuan, et al. EEG conformer: Convolutional transformer for EEG decoding and visualization[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 710–719. doi: 10.1109/tnsre.2022.3230250.
    [35]
    MANE R, CHEW E, CHUA K, et al. FBCNet: A multi-view convolutional neural network for brain-computer interface[J]. arXiv preprint arXiv: 2104.01233, 2021. doi: 10.48550/arXiv.2104.01233. (查阅网上资料,不确定本文献类型是否正确,请确认).
    [36]
    林艳飞, 臧博宇, 郭嵘骁, 等. 基于相频特性的稳态视觉诱发电位深度学习分类模型[J]. 电子与信息学报, 2022, 44(2): 446–454. doi: 10.11999/JEIT210816.

    LIN Yanfei, ZANG Boyu, GUO Rongxiao, et al. A deep learning method for SSVEP classification based on phase and frequency characteristics[J]. Journal of Electronics & Information Technology, 2022, 44(2): 446–454. doi: 10.11999/JEIT210816.
    [37]
    熊鹏, 刘学朋, 杜海曼, 等. 基于平稳和连续小波变换融合算法的心电信号P, T波检测[J]. 电子与信息学报, 2021, 43(5): 1441–1447. doi: 10.11999/JEIT200049.

    XIONG Peng, LIU Xuepeng, DU Haiman, et al. Detection of ECG signal P and T wave based on stationary and continuous wavelet transform fusion[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1441–1447. doi: 10.11999/JEIT200049.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (20) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return