| Citation: | CHEN Yuechi, HUA Chengcheng, DAI Zhian, FU Jingqi, ZHU Min, WANG Qiuyu, YAN Ying, LIU Jia. Wavelet Transform and Attentional Dual-Path EEG Model for Virtual Reality Motion Sickness Detection[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251233 |
| [1] |
LIU Ran, XU Miao, ZHANG Yanzhen, et al. A pilot study on electroencephalogram-based evaluation of visually induced motion sickness[J]. Journal of Imaging Science and Technology, 2020, 64(2): 020501. doi: 10.2352/J.ImagingSci.Technol.2020.64.2.020501.
|
| [2] |
LIANG Tie, HONG Lei, XIAO Jinzhuang, et al. Directed network analysis reveals changes in cortical and muscular connectivity caused by different standing balance tasks[J]. Journal of Neural Engineering, 2022, 19(4): 046021. doi: 10.1088/1741-2552/ac7d0c.
|
| [3] |
KENNEDY R S, DREXLER J, and KENNEDY R C. Research in visually induced motion sickness[J]. Applied Ergonomics, 2010, 41(4): 494–503. doi: 10.1016/j.apergo.2009.11.006.
|
| [4] |
顾展滔, 丁玎, 陈亦婷, 等. 面向虚拟现实晕动症的评估与缓解方法[J]. 浙江大学学报: 理学版, 2025, 52(1): 30–37. doi: 10.3785/j.issn.1008-9497.2025.01.004.
GU Zhantao, DING Ding, CHEN Yiting, et al. Evaluation and mitigation methods for virtual reality motion sickness[J]. Journal of Zhejiang University: Science Edition, 2025, 52(1): 30–37. doi: 10.3785/j.issn.1008-9497.2025.01.004.
|
| [5] |
GOLDING J F. Motion sickness susceptibility[J]. Autonomic Neuroscience, 2006, 129(1/2): 67–76. doi: 10.1016/j.autneu.2006.07.019.
|
| [6] |
蔡力, 翁冬冬, 张振亮, 等. 虚实运动一致性对虚拟现实晕动症的影响[J]. 系统仿真学报, 2016, 28(9): 1950–1956. doi: 10.16182/j.cnki.joss.2016.09.004.
CAI Li, WENG Dongdong, ZHANG Zhenliang, et al. Impact of consistency between visually perceived movement and real movement on cybersickness[J]. Journal of System Simulation, 2016, 28(9): 1950–1956. doi: 10.16182/j.cnki.joss.2016.09.004.
|
| [7] |
MITTELSTAEDT J M. Individual predictors of the susceptibility for motion-related sickness: A systematic review[J]. Journal of Vestibular Research, 2020, 30(3): 165–193. doi: 10.3233/ves-200702.
|
| [8] |
徐子超, 张玲, 肖水凤, 等. 晕动症机制及防治技术研究进展与展望[J]. 海军军医大学学报, 2024, 45(8): 923–928. doi: 10.16781/j.CN31-2187/R.20240056.
XU Zichao, ZHANG Ling, XIAO Shuifeng, et al. Motion sickness mechanism and control techniques: Research progress and prospect[J]. Academic Journal of Naval Medical University, 2024, 45(8): 923–928. doi: 10.16781/j.CN31-2187/R.20240056.
|
| [9] |
蔡永青, 韩成, 权巍, 等. 基于注意力机制的视觉诱导晕动症评估模型[J]. 浙江大学学报: 工学版, 2025, 59(6): 1110–1118. doi: 10.3785/j.issn.1008-973X.2025.06.002.
CAI Yongqing, HAN Cheng, QUAN Wei, et al. Visual induced motion sickness estimation model based on attention mechanism[J]. Journal of Zhejiang University: Engineering Science, 2025, 59(6): 1110–1118. doi: 10.3785/j.issn.1008-973X.2025.06.002.
|
| [10] |
FENG Naishi, ZHOU Bin, ZHANG Qianqian, et al. A comprehensive exploration of motion sickness process analysis from EEG signal and virtual reality[J]. Computer Methods and Programs in Biomedicine, 2025, 264: 108714. doi: 10.1016/j.cmpb.2025.108714.
|
| [11] |
CAI Mengpu, CHEN Junxiang, HUA Chengcheng, et al. EEG emotion recognition using EEG-SWTNS neural network through EEG spectral image[J]. Information Sciences, 2024, 680: 121198. doi: 10.1016/j.ins.2024.121198.
|
| [12] |
CHAUDARY E, KHAN S A, and MUMTAZ W. EEG-CNN-souping: Interpretable emotion recognition from EEG signals using EEG-CNN-souping model and explainable AI[J]. Computers and Electrical Engineering, 2025, 123: 110189. doi: 10.1016/j.compeleceng.2025.110189.
|
| [13] |
MEISER A, LENA KNOLL A, and BLEICHNER M G. High-density ear-EEG for understanding ear-centered EEG[J]. Journal of Neural Engineering, 2024, 21(1): 016001. doi: 10.1088/1741-2552/ad1783.
|
| [14] |
LIAO C Y, TAI S K, CHEN R C, et al. Using EEG and deep learning to predict motion sickness under wearing a virtual reality device[J]. IEEE Access, 2020, 8: 126784–126796. doi: 10.1109/access.2020.3008165.
|
| [15] |
韩敏, 孙磊磊, 洪晓军. 基于回声状态网络的脑电信号特征提取[J]. 生物医学工程学杂志, 2012, 29(2): 206–211.
HAN Min, SUN Leilei, and HONG Xiaojun. Extraction of the EEG signal feature based on echo state networks[J]. Journal of Biomedical Engineering, 2012, 29(2): 206–211.
|
| [16] |
张成, 汤璇, 杨冬平, 等. 基于深度学习的脑电信号特征检测方法[J]. 电子设计工程, 2024, 32(15): 156–160. doi: 10.14022/j.issn1674-6236.2024.15.033.
ZHANG Cheng, TANG Xuan, YANG Dongping, et al. Method for EEG signal feature detection based on deep learning[J]. Electronic Design Engineering, 2024, 32(15): 156–160. doi: 10.14022/j.issn1674-6236.2024.15.033.
|
| [17] |
DAS A, SINGH S, KIM J, et al. Enhanced EEG signal classification in brain computer interfaces using hybrid deep learning models[J]. Scientific Reports, 2025, 15(1): 27161. doi: 10.1038/s41598-025-07427-2.
|
| [18] |
RAPARTHI M, MITTA N R, DUNKA V K, et al. Deep learning model for patient emotion recognition using EEG-tNIRS data[J]. Neuroscience Informatics, 2025, 5(3): 100219. doi: 10.1016/j.neuri.2025.100219.
|
| [19] |
GUO Xiang, LIANG Ruiqi, XU Shule, et al. An investigation of echo state network for EEG-based emotion recognition with deep neural networks[J]. Biomedical Signal Processing and Control, 2026, 111: 108342. doi: 10.1016/j.bspc.2025.108342.
|
| [20] |
CHEN He, SONG Yan, and LI Xiaoli. A deep learning framework for identifying children with ADHD using an EEG-based brain network[J]. Neurocomputing, 2019, 356: 83–96. doi: 10.1016/j.neucom.2019.04.058.
|
| [21] |
WANG Teng, HUANG Xiaoqiao, XIAO Zenan, et al. EEG emotion recognition based on differential entropy feature matrix through 2D-CNN-LSTM network[J]. EURASIP Journal on Advances in Signal Processing, 2024, 2024(1): 49. doi: 10.1186/s13634-024-01146-y.
|
| [22] |
王春丽, 李金絮, 高玉鑫, 等. 一种基于时空频多维特征的短时窗口脑电听觉注意解码网络[J]. 电子与信息学报, 2025, 47(3): 814–824. doi: 10.11999/JEIT240867.
WANG Chunli, LI Jinxu, GAO Yuxin, et al. A short-time window electroencephalogram auditory attention decoding network based on multi-dimensional characteristics of temporal-spatial-frequency[J]. Journal of Electronics & Information Technology, 2025, 47(3): 814–824. doi: 10.11999/JEIT240867.
|
| [23] |
DHONGADE D, CAPTAIN K, and DAHIYA S. EEG-based schizophrenia detection: Integrating discrete wavelet transform and deep learning[J]. Cognitive Neurodynamics, 2025, 19(1): 62. doi: 10.1007/s11571-025-10248-8.
|
| [24] |
MINHAS R, PEKER N Y, HAKKOZ M A, et al. Improved drowsiness detection in drivers through optimum pairing of EEG features using an optimal EEG channel comparable to a multichannel EEG system[J]. Medical & Biological Engineering & Computing, 2025, 63(10): 3019–3036. doi: 10.1007/s11517-025-03375-1.
|
| [25] |
SHEN Mingkan, WEN Peng, SONG Bo, et al. An EEG based real-time epilepsy seizure detection approach using discrete wavelet transform and machine learning methods[J]. Biomedical Signal Processing and Control, 2022, 77: 103820. doi: 10.1016/j.bspc.2022.103820.
|
| [26] |
WEN Dong, JIAO Wenlong, LI Xiaoling, et al. The EEG signals steganography based on wavelet packet transform-singular value decomposition-logistic[J]. Information Sciences, 2024, 679: 121006. doi: 10.1016/j.ins.2024.121006.
|
| [27] |
QIN Yuxin, LI Baojiang, WANG Wenlong, et al. ETCNet: An EEG-based motor imagery classification model combining efficient channel attention and temporal convolutional network[J]. Brain Research, 2024, 1823: 148673. doi: 10.1016/j.brainres.2023.148673.
|
| [28] |
ZHOU Kai, HAIMUDULA A, and TANG Wanying. Dual-branch convolution network with efficient channel attention for EEG-based motor imagery classification[J]. IEEE Access, 2024, 12: 74930–74943. doi: 10.1109/access.2024.3404634.
|
| [29] |
KIEU H D. Graph attention network for motor imagery classification[C]. 2024 RIVF International Conference on Computing and Communication Technologies (RIVF), Danang, Vietnam, 2024: 255–260. doi: 10.1109/RIVF64335.2024.11009062.
|
| [30] |
LENG Jiancai, GAO Licai, JIANG Xiuquan, et al. A multi‐feature fusion graph attention network for decoding motor imagery intention in spinal cord injury patients[J]. Journal of Neural Engineering, 2024, 21(6): 066044. doi: 10.1088/1741-2552/ad9403.
|
| [31] |
化成城, 周占峰, 陶建龙, 等. 导联注意力及脑连接驱动的虚拟现实晕动症识别模型研究[J]. 电子与信息学报, 2025, 47(4): 1161–1171. doi: 10.11999/JEIT240440.
HUA Chengcheng, ZHOU Zhanfeng, TAO Jianlong, et al. Virtual reality motion sickness recognition model driven by lead-attention and brain connection[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1161–1171. doi: 10.11999/JEIT240440.
|
| [32] |
PAN Junting, SAYROL E, GIRO-I-NIETO X, et al. Shallow and deep convolutional networks for saliency prediction[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 598–606. doi: 10.1109/CVPR.2016.71.
|
| [33] |
ALI O, SAIF-UR-REHMAN M, GLASMACHERS T, et al. ConTraNet: A hybrid network for improving the classification of EEG and EMG signals with limited training data[J]. Computers in Biology and Medicine, 2024, 168: 107649. doi: 10.1016/j.compbiomed.2023.107649.
|
| [34] |
SONG Yonghao, ZHENG Qingqing, LIU Bingchuan, et al. EEG conformer: Convolutional transformer for EEG decoding and visualization[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 710–719. doi: 10.1109/tnsre.2022.3230250.
|
| [35] |
MANE R, CHEW E, CHUA K, et al. FBCNet: A multi-view convolutional neural network for brain-computer interface[J]. arXiv preprint arXiv: 2104.01233, 2021. doi: 10.48550/arXiv.2104.01233. (查阅网上资料,不确定本文献类型是否正确,请确认).
|
| [36] |
林艳飞, 臧博宇, 郭嵘骁, 等. 基于相频特性的稳态视觉诱发电位深度学习分类模型[J]. 电子与信息学报, 2022, 44(2): 446–454. doi: 10.11999/JEIT210816.
LIN Yanfei, ZANG Boyu, GUO Rongxiao, et al. A deep learning method for SSVEP classification based on phase and frequency characteristics[J]. Journal of Electronics & Information Technology, 2022, 44(2): 446–454. doi: 10.11999/JEIT210816.
|
| [37] |
熊鹏, 刘学朋, 杜海曼, 等. 基于平稳和连续小波变换融合算法的心电信号P, T波检测[J]. 电子与信息学报, 2021, 43(5): 1441–1447. doi: 10.11999/JEIT200049.
XIONG Peng, LIU Xuepeng, DU Haiman, et al. Detection of ECG signal P and T wave based on stationary and continuous wavelet transform fusion[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1441–1447. doi: 10.11999/JEIT200049.
|