| Citation: | CAI Yu, WANG Junyang, JIANG Chuanli, LUO Ruixin, LV Zhengchao, YU Haiqing, HUANG Yongzhi, JUNG Tzyy-Ping, XU Minpeng. A Miniaturized SSVEP Brain-Computer Interface System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251223 |
| [1] |
LIU Yingjie, ZHANG Ye, ZHONG Yifei, et al. Favoritism or bias? Cooperation and competition under different intergroup relationships: Evidence from EEG hyperscanning[J]. Cerebral Cortex, 2024, 34(4): bhae131. doi: 10.1093/cercor/bhae131.
|
| [2] |
CAROLLO A and ESPOSITO G. Hyperscanning literature after two decades of neuroscientific research: A scientometric review[J]. Neuroscience, 2024, 551: 345–354. doi: 10.1016/j.neuroscience.2024.05.045.
|
| [3] |
张力新, 周鸿展, 王东, 等. 脑机接口中脑电图-近红外光谱联合分析进展研究[J]. 电子与信息学报, 2024, 46(3): 790–797. doi: 10.11999/JEIT230257.
ZHANG Lixin, ZHOU Hongzhan, WANG Dong, et al. Research progress of electroencephalography-near-infrared spectroscopy combined analysis in brain-computer interface[J]. Journal of Electronics & Information Technology, 2024, 46(3): 790–797. doi: 10.11999/JEIT230257.
|
| [4] |
MIHAJLOVIC V, GRUNDLEHNER B, VULLERS R, et al. Wearable, wireless EEG solutions in daily life applications: What are we missing?[J]. IEEE Journal of Biomedical and Health Informatics, 2015, 19(1): 6–21. doi: 10.1109/JBHI.2014.2328317.
|
| [5] |
肖晓琳, 辛风然, 梅杰, 等. 自适应脑机接口研究综述[J]. 电子与信息学报, 2023, 45(7): 2386–2394. doi: 10.11999/JEIT220707.
XIAO Xiaolin, XIN Fengran, MEI Jie, et al. A review of adaptive brain-computer interface research[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2386–2394. doi: 10.11999/JEIT220707.
|
| [6] |
CHEN Xiaogang, WANG Yijun, NAKANISHI M, et al. High-speed spelling with a noninvasive brain-computer interface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(44): E6058–E6067. doi: 10.1073/pnas.1508080112.
|
| [7] |
LARSEN O F P, TRESSELT W G, LORENZ E A, et al. A method for synchronized use of EEG and eye tracking in fully immersive VR[J]. Frontiers in Human Neuroscience, 2024, 18: 1347974. doi: 10.3389/fnhum.2024.1347974.
|
| [8] |
RAO Zuguang, ZHU Junbiao, LU Zilin, et al. A wearable brain-computer interface with fewer EEG channels for online motor imagery detection[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2024, 32: 4143–4154. doi: 10.1109/TNSRE.2024.3502135.
|
| [9] |
NISO G, ROMERO E, MOREAU J T, et al. Wireless EEG: A survey of systems and studies[J]. NeuroImage, 2023, 269: 119774. doi: 10.1016/j.neuroimage.2022.119774.
|
| [10] |
CHUANG C H, LU Shaowei, CHAO Yiping, et al. Near-zero phase-lag hyperscanning in a novel wireless EEG system[J]. Journal of Neural Engineering, 2021, 18(6): 066010. doi: 10.1088/1741-2552/ac33e6.
|
| [11] |
DEPOLLI M, VERDEL N, and KOSEC G. Offline synchronization of signals from multiple wireless sensors[J]. IEEE Sensors Journal, 2025, 25(4): 7079–7094. doi: 10.1109/JSEN.2024.3519905.
|
| [12] |
ZENIL M S C, LÓPEZ A A, MENDOZA G R P, et al. Evaluation of communication protocols for medical device interoperability: BLE and ZigBee[C]. 2023 Mexican International Conference on Computer Science, Guanajuato, Mexico, 2023: 1–6. doi: 10.1109/enc60556.2023.10508654.
|
| [13] |
蔡雨, 许敏鹏, 钟子平, 等. 一种低功耗蓝牙通信的数据同步方法及电子设备[P]. 中国, 116133108A, 2023.
CAI Yu, XU Minpeng, ZHONG Ziping, et al. Data synchronization method for low-power-consumption Bluetooth communication and electronic equipment[P]. CN, 116133108A, 2023.
|
| [14] |
MEI Jie, LUO Ruixin, XU Lichao, et al. MetaBCI: An open-source platform for brain-computer interfaces[J]. Computers in Biology and Medicine, 2024, 168: 107806. doi: 10.1016/j.compbiomed.2023.107806.
|
| [15] |
MEHDIZAVAREH M H, HEMATI S, and SOLTANIAN-ZADEH H. Enhancing performance of subject-specific models via subject-independent information for SSVEP-based BCIs[J]. PLoS One, 2020, 15(1): e0226048. doi: 10.1371/journal.pone.0226048.
|
| [16] |
陈强, 陈勋, 余凤琼. 基于独立向量分析的脑电信号中肌电伪迹的去除方法[J]. 电子与信息学报, 2016, 38(11): 2840–2847. doi: 10.11999/JEIT160209.
CHEN Qiang, CHEN Xun, and YU Fengqiong. Removal of muscle artifact from EEG data based on independent vector analysis[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2840–2847. doi: 10.11999/JEIT160209.
|
| [17] |
WOLPAW J R, BIRBAUMER N, MCFARLAND D J, et al. Brain-computer interfaces for communication and control[J]. Clinical Neurophysiology, 2002, 113(6): 767–791. doi: 10.1016/S1388-2457(02)00057-3.
|
| [18] |
李晓东, 曹翔, 王俊霖, 等. 可穿戴式稳态视觉诱发电位脑机接口在现实场景下的性能评估[J]. 生物医学工程学杂志, 2025, 42(3): 464–472. doi: 10.7507/1001-5515.202310069.
LI Xiaodong, CAO Xiang, WANG Junlin, et al. Performance evaluation of a wearable steady-state visual evoked potential based brain-computer interface in real-life scenario[J]. Journal of Biomedical Engineering, 2025, 42(3): 464–472. doi: 10.7507/1001-5515.202310069.
|
| [19] |
朱艺森, 季洲宇, 李舒然, 等. 面向智慧医疗的便携式稳态视觉诱发电位脑机接口系统[J]. 生物医学工程学杂志, 2025, 42(3): 455–463. doi: 10.7507/1001-5515.202412051.
ZHU Yisen, JI Zhouyu, LI Shuran, et al. A portable steady-state visual evoked potential brain-computer interface system for smart healthcare[J]. Journal of Biomedical Engineering, 2025, 42(3): 455–463. doi: 10.7507/1001-5515.202412051.
|
| [20] |
XIONG Bang, WAN Bo, HUANG Jiayang, et al. Joint frequency-phase-chirp modulation of high-frequency VEPs towards user-friendly and high-capacity BCIs[J]. Biomedical Signal Processing and Control, 2026, 113: 109122. doi: 10.1016/j.bspc.2025.109122.
|