| Citation: | DU Xiaoni, XUE Jing, QIAO Xingbin, ZHAO Ziwei. Construction of MDS Codes and NMDS Codes Based on Cyclic Subgroup of $ \mathbb{F}_{{q}^{2}}^{*} $[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251204 |
| [1] |
SUN Huan, YUE Qin, and JIA Xue. The weight distributions of several classes of few-weight linear codes[J]. Advances in Mathematics of Communications, 2025, 19(1): 69–90. doi: 10.3934/amc.2023037.
|
| [2] |
QIAO Xingbin and DU Xiaoni. Weight distributions and weight hierarchies of a class of binary linear codes with a few weights[J]. Advances in Mathematics of Communications, 2025, 19(1): 245–258. doi: 10.3934/amc.2023056.
|
| [3] |
高健, 张耀宗, 孟祥蕊, 等. 几类指标为2的不可约拟循环码的重量分布[J]. 电子与信息学报, 2022, 44(12): 4312–4318. doi: 10.11999/JEIT211104.
GAO Jian, ZHANG Yaozong, MENG Xiangrui, et al. Weight distributions of some classes of irreducible quasi-cyclic codes of index 2[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4312–4318. doi: 10.11999/JEIT211104.
|
| [4] |
DINH Haiquang, WANG Xiaoqiang, LIU Hongwei, et al. Hamming distances of constacyclic codes of length $ 3{p}^{s} $ and optimal codes with respect to the Griesmer and Singleton bounds[J]. Finite Fields and Their Applications, 2021, 70: 101794. doi: 10.1016/j.ffa.2020.101794.
|
| [5] |
WANG Qiuyan and HENG Ziling. Near MDS codes from oval polynomials[J]. Discrete Mathematics, 2021, 344(4): 112277. doi: 10.1016/j.disc.2020.112277.
|
| [6] |
TAN Pan, FAN Cuiling, DING Cunsheng, et al. The minimum locality of linear codes[J]. Designs, Codes and Cryptography, 2023, 91(1): 83–114. doi: 10.1007/s10623-022-01099-z.
|
| [7] |
HENG Ziling and WANG Xinran. New infinite families of near MDS codes holding $ t $-designs[J]. Discrete Mathematics, 2023, 346(10): 113538. doi: 10.1016/j.disc.2023.113538.
|
| [8] |
YIN Yanan and YAN Haode. Constructions of several families of MDS codes and NMDS codes[J]. Advances in Mathematics of Communications, 2025, 19(4): 1222–1247. doi: 10.3934/amc.2024051.
|
| [9] |
DING Yun, LI Yang, and ZHU Shixin. Four new families of NMDS codes with dimension 4 and their applications[J]. Finite Fields and Their Applications, 2024, 99: 102495. doi: 10.1016/j.ffa.2024.102495.
|
| [10] |
LUO Gaojun and CAO Xiwang. Constructions of optimal binary locally recoverable codes via a general construction of linear codes[J]. IEEE Transactions on Communications, 2021, 69(8): 4987–4997. doi: 10.1109/TCOMM.2021.3083320.
|
| [11] |
TANG Chunming and DING Cunsheng. An infinite family of linear codes supporting 4-designs[J]. IEEE Transactions on Information Theory, 2021, 67(1): 244–254. doi: 10.1109/TIT.2020.3032600.
|
| [12] |
HUFFMAN W C and PLESS V. Fundamentals of Error-Correcting Codes[M]. Cambridge: Cambridge University Press, 2003: 71–72. doi: 10.1017/CBO9780511807077.
|
| [13] |
DODUNEKOV S and LANDGEV I. On near-MDS codes[J]. Journal of Geometry, 1995, 54(1): 30–43. doi: 10.1007/BF01222850.
|
| [14] |
FALDUM A and WILLEMS W. Codes of small defect[J]. Designs, Codes and Cryptography, 1997, 10(3): 341–350. doi: 10.1023/A:1008247720662.
|
| [15] |
LIDL R and NIEDERREITER H. Finite Fields[M]. 2nd ed. Cambridge: Cambridge University Press, 1997: 268–342.
|
| [16] |
GOPALAN P, HUANG Cheng, SIMITCI H, et al. On the locality of codeword symbols[J]. IEEE Transactions on Information Theory, 2012, 58(11): 6925–6934. doi: 10.1109/TIT.2012.2208937.
|
| [17] |
CADAMBE V and MAZUMDAR A. An upper bound on the size of locally recoverable codes[C]. 2013 International Symposium on Network Coding (NetCod), Calgary, Canada, 2013: 1–5. doi: 10.1109/NetCod.2013.6570829.
|
| [18] |
HAO Jie, XIA Shutao, SHUM K W, et al. Bounds and constructions of locally repairable codes: Parity-check matrix approach[J]. IEEE Transactions on Information Theory, 2020, 66(12): 7465–7474. doi: 10.1109/TIT.2020.3021707.
|
| [19] |
杜小妮, 薛婧, 乔兴斌, 等. 几类MDS 码和NMDS 码的构造[J]. 已投稿. (查阅网上资料, 未找到本条文献信息, 请确认).
|