| Citation: | CHEN Hao, WEN Jiangang, ZOU Yuanping, HUA Jingyu, SHENG Bin. A Complexity-Reduced Active Interference Cancellation Algorithm in f-OFDM[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251172 |
| [1] |
ATAEEBOJD E, RASTI M, and LATVA-AHO M. Network selection and resource allocation for coexistence of eMBB and URLLC services in a 6G multi-band HetNet[J]. IEEE Transactions on Green Communications and Networking, 2025, 9(3): 1179–1194. doi: 10.1109/TGCN.2024.3481281.
|
| [2] |
徐金雷, 赵俊湦, 卢华兵, 等. 面向6G的多维扩展通感一体化研究综述[J]. 电子与信息学报, 2024, 46(5): 1672–1683. doi: 10.11999/JEIT231045.
XU Jinlei, ZHAO Junsheng, LU Huabing, et al. An overview on multi-dimensional expanded integrated sensing and communication for 6G[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1672–1683. doi: 10.11999/JEIT231045.
|
| [3] |
CHEN Zirui, ZHANG Zhaoyang, and YANG Zhaohui. Big AI models for 6G wireless networks: Opportunities, challenges, and research directions[J]. IEEE Wireless Communications, 2024, 31(5): 164–172. doi: 10.1109/MWC.015.2300404.
|
| [4] |
RAWAT B S, SRIVASTAVA A, SHRIVASTAVA V, et al. A comprehensive analysis of applications in internet of things networks in 5G and 6G[C]. 2024 2nd International Conference on Computer, Communication and Control (IC4), Indore, India, 2024: 1–6. doi: 10.1109/IC457434.2024.10486565.
|
| [5] |
束锋, 张钧豪, 张旗, 等. 混合智能反射面辅助感通算一体化车联网的联合功率时间分配方法[J]. 电子与信息学报, 2025, 47(4): 1026–1042. doi: 10.11999/JEIT240719.
SHU Feng, ZHANG Junhao, ZHANG Qi, et al. Hybrid reconfigurable intelligent surface assisted sensing communication and computation for joint power and time allocation in vehicle ad-hoc network[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1026–1042. doi: 10.11999/JEIT240719.
|
| [6] |
GUO Fengxian, YU F R, ZHANG Heli, et al. Enabling massive IoT toward 6G: A comprehensive survey[J]. IEEE Internet of Things Journal, 2021, 8(15): 11891–11915. doi: 10.1109/JIOT.2021.3063686.
|
| [7] |
YUAN Yifei, WANG Sen, WU Yongpeng, et al. NOMA for next-generation massive IoT: Performance potential and technology directions[J]. IEEE Communications Magazine, 2021, 59(7): 115–121. doi: 10.1109/MCOM.001.2000997.
|
| [8] |
曾嵘, 邵智敏. 零前缀OFDM中智能反射表面环境下干扰抑制算法研究[J]. 电子与信息学报, 2022, 44(7): 2358–2365. doi: 10.11999/JEIT211389.
ZENG Rong and SHAO Zhimin. Research on interference suppression algorithm in reconfigurable intelligent surface environment in ZP-OFDM[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2358–2365. doi: 10.11999/JEIT211389.
|
| [9] |
EL HOUDA BOUDA N, ELAHMAR S A, and DAYOUB I. 5G MCM based NOMA in vehicular environments: A comparative analysis of F-OFDM and W-OFDM[C]. 2024 3rd International Conference on Advanced Electrical Engineering (ICAEE), Sidi-Bel-Abbes, Algeria, 2024: 1–5. doi: 10.1109/ICAEE61760.2024.10783226.
|
| [10] |
ABDOLI J, JIA Ming, and MA Jianglei. Filtered OFDM: A new waveform for future wireless systems[C]. 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Stockholm, Sweden, 2015: 66–70. doi: 10.1109/SPAWC.2015.7227001.
|
| [11] |
华惊宇, 杨乐, 闻建刚, 等. 通用滤波多载波系统原型滤波器的连续凸近似优化设计方法[J]. 电子与信息学报, 2025, 47(10): 3793–3803. doi: 10.11999/JEIT250278.
HUA Jingyu, YANG Le, WEN Jian’gang, et al. A successive convex approximation optimization based prototype filter design method for universal filtered multi-carrier systems[J]. Journal of Electronics & Information Technology, 2025, 47(10): 3793–3803. doi: 10.11999/JEIT250278.
|
| [12] |
ZHANG Xi, JIA Ming, CHEN Lei, et al. Filtered-OFDM - enabler for flexible waveform in the 5th generation cellular networks[C]. Proceedings of 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, USA, 2015: 1–6. doi: 10.1109/GLOCOM.2015.7417854.
|
| [13] |
CHEN Hao, HUA Jingyu, LI Feng, et al. Interference analysis in the asynchronous f-OFDM systems[J]. IEEE Transactions on Communications, 2019, 67(5): 3580–3596. doi: 10.1109/TCOMM.2019.2898867.
|
| [14] |
CHENG Xudong, HE Yejun, GE Baohong, et al. A filtered OFDM using FIR filter based on window function method[C]. Proceedings of 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 2016: 1–5. doi: 10.1109/VTCSpring.2016.7504065.
|
| [15] |
LIU Mingxin, XUE Wei, XU Yidong, et al. Design of filters based on generic function model for reducing out-of-band emissions of the F-OFDM systems[J]. AEU - International Journal of Electronics and Communications, 2021, 139: 153908. doi: 10.1016/j.aeue.2021.153908.
|
| [16] |
CHEN Hao, HUA Jingyu, WEN Jiangang, et al. Uplink interference analysis of F-OFDM systems under non-ideal synchronization[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15500–15517. doi: 10.1109/TVT.2020.3041938.
|
| [17] |
VAN DE BEEK J and BERGGREN F. Out-of-band power suppression in OFDM[J]. IEEE Communications Letters, 2008, 12(9): 609–611. doi: 10.1109/LCOMM.2008.080587.
|
| [18] |
BRANDES S, COSOVIC I, and SCHNELL M. Reduction of out-of-band radiation in OFDM systems by insertion of cancellation carriers[J]. IEEE Communications Letters, 2006, 10(6): 420–422. doi: 10.1109/LCOMM.2006.1638602.
|
| [19] |
ALIZADEH F and GOLDFARB D. Second-order cone programming[J]. Mathematical Programming, 2003, 95(1): 3–51. doi: 10.1007/s10107-002-0339-5.
|
| [20] |
LOBO M S, VANDENBERGHE L, BOYD S, et al. Applications of second-order cone programming[J]. Linear Algebra and its Applications, 1998, 284(1/3): 193–228. doi: 10.1016/S0024-3795(98)10032-0.
|
| [21] |
ZHANG Ruijin, WANG Zhaowei, LIU Xinwei, et al. IPRSOCP: A primal-dual interior-point relaxation algorithm for second-order cone programming[J]. Journal of the Operations Research Society of China, 2024: 1–31. doi: 10.1007/s40305-024-00538-z. (查阅网上资料,未找到对应的卷期页码信息,请确认).
|
| [22] |
FENG Zengzhe. A new $ O(\sqrt{n} L) $ iteration large-update primal-dual interior-point method for second-order cone programming[J]. Numerical Functional Analysis and Optimization, 2012, 33(4): 397–414. doi: 10.1080/01630563.2011.652269.
|
| [23] |
ZAIDI A A, BALDEMAIR R, MOLES-CASES V, et al. OFDM numerology design for 5G new radio to support IoT, eMBB, and MBSFN[J]. IEEE Communications Standards Magazine, 2018, 2(2): 78–83. doi: 10.1109/MCOMSTD.2018.1700021.
|