Advanced Search
Turn off MathJax
Article Contents
ZHANG Mengdi, LU Jiahao, XU Jingwei, LI Shiyin, WANG Ning, LIU Zhixin. Joint Suppression of Range-Ambiguous Clutter and Mainlobe Deceptive Jammer with Subarray FDA-MIMO Radar[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251116
Citation: ZHANG Mengdi, LU Jiahao, XU Jingwei, LI Shiyin, WANG Ning, LIU Zhixin. Joint Suppression of Range-Ambiguous Clutter and Mainlobe Deceptive Jammer with Subarray FDA-MIMO Radar[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251116

Joint Suppression of Range-Ambiguous Clutter and Mainlobe Deceptive Jammer with Subarray FDA-MIMO Radar

doi: 10.11999/JEIT251116 cstr: 32379.14.JEIT251116
Funds:  The National Nature Science Foundation of China (62301561)
  • Received Date: 2025-10-22
  • Accepted Date: 2026-01-04
  • Rev Recd Date: 2026-01-03
  • Available Online: 2026-01-09
  •   Objective  In the downward-looking mode, airborne radar systems face the dual challenge of mitigating strong clutter and mainlobe deceptive jammers in increasingly complex electromagnetic environments. Clutter exhibiting both range ambiguity and range dependence constrains of Moving Target Detection (MTD) in high Pulse Repetition Frequency (PRF) radars with non-side-looking configurations. Mainlobe deceptive jammers further increase the difficulty of detecting the true target. By exploiting controllable range Degrees Of Freedom (DOFs), Waveform Diverse Array (WDA) radars, such as Frequency Diverse Array Multiple-Input Multiple-Output (FDA-MIMO) radar and Element Pulse Coding Multiple-Input Multiple-Output (EPC-MIMO) radar, show clear advantages in suppressing mainlobe deceptive jammers. However, existing WDA-based techniques are limited to suppressing false targets whose delays exceed one Pulse Repetition Interval (PRI) relative to the true target, referred to as cross-pulse repeater jammers. With advances in Digital Radio Frequency Memory (DRFM) technology, the delay of false targets is reduced, enabling the generation of false targets that share the same number of delayed pulses as the true target, referred to as intra-PRI rapid repeater jammers. Furthermore, most anti-jamming methods are developed under Gaussian white noise assumptions and do not consider practical clutter environments. Therefore, a joint suppression framework is required to simultaneously handle range-ambiguous clutter and multiple types of mainlobe deceptive jammer.  Methods  A joint suppression framework based on a subarray FDA-MIMO radar is proposed for scenarios with coexisting range-ambiguous clutter, cross-pulse repeater jammers, and intra-PRI rapid repeater jammers. Compared with conventional FDA-MIMO radar, the subarray FDA-MIMO configuration employs small frequency increments within transmit subarrays and large frequency increments across subarrays, which provides two-level range DOFs at the intra-subarray and inter-subarray scales. First, a Range-Dependent Compensation (RDC) technique is applied to separate the true target from echoes contaminated by clutter and jammers in the joint intra-subarray and inter-subarray transmit spatial frequency domain. Next, a pre-Space-Time Adaptive Processing (STAP) filter is designed by exploiting range DOFs in the intra-subarray transmit dimension to suppress range-ambiguous clutter and cross-pulse repeater jammers. Finally, subspace projection-based three-dimensional (3-D) STAP is applied to suppress local clutter and intra-PRI rapid repeater jammers.  Results and Discussions  After RDC, the true target is effectively separated from ambiguous clutter and jammers in the joint intra-subarray and inter-subarray transmit spatial frequency domain (Fig. 3). By exploiting range DOFs in the intra-subarray transmit dimension, the pre-STAP filter achieves effective suppression of range-ambiguous clutter and cross-pulse repeater jammers (Fig. 4). Local clutter in the inter-subarray transmit spatial frequency domain is suppressed by using clutter distribution characteristics in the receive-Doppler domain combined with subspace projection (Fig. 5). This enables accurate estimation of the Jammer Covariance Matrix (JCM) for intra-PRI-inner-bin rapid repeater jammers. Subsequently, 3-D STAP suppresses local clutter and intra-PRI-inner-bin rapid repeater jammers (Fig. 6, Fig. 7). Comparative simulation results show that the proposed framework achieves significantly improved suppression performance under the considered complex scenario (Fig. 8).  Conclusions  The problem of MTD in scenarios with simultaneous range-ambiguous clutter, cross-pulse repeater jammers, and intra-PRI-inner-bin rapid repeater jammers is addressed. A joint suppression framework based on subarray FDA-MIMO radar is proposed, in which small frequency increments are used within transmit subarrays and large increments across subarrays to enable flexible utilization of range DOFs. RDC achieves effective separation of the target from ambiguous clutter and jammers in the joint transmit spatial frequency domain. By exploiting intra-subarray range DOFs, a pre-STAP filter suppresses range-ambiguous clutter and cross-pulse repeater jammers. To mitigate the Inner-Bin Range Dependence (IRD) effect of clutter, a subspace projection method is developed to recover the JCM for intra-PRI-inner-bin rapid repeater jammers from clutter-contaminated data. Finally, 3-D STAP in the inter-subarray transmit-receive-Doppler domain suppresses local clutter and intra-PRI-inner-bin rapid repeater jammers. Numerical simulations verify the effectiveness of the proposed joint suppression framework.
  • loading
  • [1]
    李海, 张强, 周桉宇, 等. 卷积神经网络STAP低空风切变风速估计[J]. 电子与信息学报, 2024, 46(8): 3193–3201. doi: 10.11999/JEIT231335.

    LI Hai, ZHANG Qiang, ZHOU Anyu, et al. Convolutional neural network STAP low level wind shear wind speed estimation[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3193–3201. doi: 10.11999/JEIT231335.
    [2]
    LIU Zhixin, ZHU Shengqi, XU Jingwei, et al. Range-ambiguous clutter suppression for STAP-based radar with vertical coherent frequency diverse array[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5106517. doi: 10.1109/TGRS.2023.3291738.
    [3]
    VARADARAJAN V and KROLIK J L. Joint space-time interpolation for distorted linear and bistatic array geometries[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 848–860. doi: 10.1109/TSP.2005.862941.
    [4]
    KREYENKAMP O and KLEMM R. Doppler compensation in forward-looking STAP radar[J]. IEE Proceedings-Radar, Sonar and Navigation, 2001, 148(5): 253–258. doi: 10.1049/ip-rsn:20010557.
    [5]
    HIMED B, ZHANG Yuhong, and HAJJARI A. STAP with angle-Doppler compensation for bistatic airborne radars[C]. 2002 IEEE Radar Conference (IEEE Cat. No. 02CH37322), Long Beach, CA, USA, 2002: 311–317. doi: 10.1109/NRC.2002.999737.
    [6]
    GERLACH K and ANDREWS G A. Cascaded detector for multiple high-PRF pulse Doppler radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(5): 754–767. doi: 10.1109/7.102711.
    [7]
    MENG Xiangdong, WANG Tong, WU Jianxin, et al. Short-range clutter suppression for airborne radar by utilizing prefiltering in elevation[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 268–272. doi: 10.1109/LGRS.2008.2012126.
    [8]
    兰宇, 周剑雄. 一种空域线性调频加权的空时联合频控阵雷达波形[J]. 电子与信息学报, 2025, 47(11): 4340–4350. doi: 10.11999/JEIT250561.

    LAN Yu and ZHOU Jianxiong. A space-time joint waveform for frequency diverse array radar with spatial linear frequency modulation weighting[J]. Journal of Electronics & Information Technology, 2025, 47(11): 4340–4350. doi: 10.11999/JEIT250561.
    [9]
    谢宁波, 欧阳缮, 廖可非, 等. 基于图信号处理的频控阵雷达目标定位方法[J]. 电子与信息学报, 2023, 45(5): 1559–1566. doi: 10.11999/JEIT220970.

    XIE Ningbo, OUYANG Shan, LIAO Kefei, et al. A novel target localization method for frequency diverse array based on graph signal processing[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1559–1566. doi: 10.11999/JEIT220970.
    [10]
    XU Jingwei, LIAO Guisheng, and SO H C. Space-time adaptive processing with vertical frequency diverse array for range-ambiguous clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5352–5364. doi: 10.1109/TGRS.2016.2561308.
    [11]
    YANG Xingjia, DUAN Keqing, QIU Zizhou, et al. Range-ambiguous clutter suppression with cascaded FDA-MIMO STAP for bistatic space-based early warning radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(6): 7754–7770. doi: 10.1109/TAES.2024.3420258.
    [12]
    SOUMEKH M. SAR-ECCM using phase-perturbed LFM chirp signals and DRFM repeat jammer penalization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 191–205. doi: 10.1109/TAES.2006.1603414.
    [13]
    BANDIERA F, ORLANDO D, and RICCI G. A subspace-based adaptive sidelobe blanker[J]. IEEE Transactions on Signal Processing, 2008, 56(9): 4141–4151. doi: 10.1109/TSP.2008.926193.
    [14]
    ZHU Jiahua, CHU Ning, SONG Yongping, et al. Alternative signal processing of complementary waveform returns for range sidelobe suppression[J]. Signal Processing, 2019, 159: 187–192. doi: 10.1016/j.sigpro.2019.02.012.
    [15]
    ZHU Quanjiang, YANG Shiwen, ZHENG Li, et al. Design of a low sidelobe time modulated linear array with uniform amplitude and sub-sectional optimized time steps[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(9): 4436–4439. doi: 10.1109/TAP.2012.2207082.
    [16]
    LAN Lan, XU Jingwei, LIAO Guisheng, et al. Suppression of mainbeam deceptive jammer with FDA-MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11584–11598. doi: 10.1109/TVT.2020.3014689.
    [17]
    WU Zhixia, ZHU Shengqi, XU Jingwei, et al. Interference suppression with MR-FDA-MIMO radar using virtual samples based beamforming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(4): 5211–5225. doi: 10.1109/TAES.2024.3386884.
    [18]
    LAN Lan, ZHANG Yitao, XU Jingwei, et al. Suppressing mainlobe deceptive jammers via two-low-rank matrix decomposition in FDA-MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(2): 2885–2898. doi: 10.1109/TAES.2024.3480030.
    [19]
    LIU Feilong, ZHU Shengqi, XU Jingwei, et al. Fast repeater deception jamming suppression with DFI-FDA-MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(4): 4271–4284. doi: 10.1109/TAES.2024.3374711.
    [20]
    ZHANG Mengdi, LU Jiahao, XU Jingwei, et al. Mainlobe deceptive interference suppression with planar frequency diverse array MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(3): 7626–7638. doi: 10.1109/TAES.2025.3540823.
    [21]
    兰岚, 张翔, 许京伟, 等. 阵列雷达时空多维域编码抗主瓣转发式欺骗干扰方法[J]. 雷达学报, 2025, 14(2): 439–455. doi: 10.12000/JR24229.

    LAN Lan, ZHANG Xiang, XU Jingwei, et al. Main-lobe deceptive jammers with array radars using space-time multidimensional coding[J]. Journal of Radars, 2025, 14(2): 439–455. doi: 10.12000/JR24229.
    [22]
    GAO Jie, ZHU Shengqi, LAN Lan, et al. Joint deceptive jammer and clutter suppression via 3-D-ANM with EPC-MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(2): 1487–1504. doi: 10.1109/TAES.2024.3456755.
    [23]
    WANG Keyi, LIAO Guisheng, XU Jingwei, et al. Multi-scale moving target detection with FDA-MIMO radar[J]. Signal Processing, 2024, 216: 109301. doi: 10.1016/j.sigpro.2023.109301.
    [24]
    GU Yujie and LESHEM A. Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3881–3885. doi: 10.1109/TSP.2012.2194289.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (92) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return