| Citation: | ZHANG Ming, ZHANG Najiao, LI Jialei, LI Kang, MELIKYAN MELIKYAN, YANG Lin, HOU Weimin. Genetic-Algorithm-Optimized All-Metal Metasurface for Cross-Band Stealth via Low-cost CNC Fabrication[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251080 |
| [1] |
RAN Yuzhou, SHI Lihua, WU Shuran, et al. Optically transparent ultrawideband electromagnetic stealth metasurface for microwave absorption and scattering[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(12): 2412–2416. doi: 10.1109/LAWP.2022.3194724.
|
| [2] |
王谦喆, 何召阳, 宋博文, 等. 射频隐身技术研究综述[J]. 电子与信息学报, 2018, 40(6): 1505–1514. doi: 10.11999/JEIT170945.
WANG Qianzhe, HE Zhaoyang, SONG Bowen, et al. Overview on RF stealth technology research[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1505–1514. doi: 10.11999/JEIT170945.
|
| [3] |
YOUSSEF N N. Radar cross section of complex targets[J]. Proceedings of the IEEE, 1989, 77(5): 722–734. doi: 10.1109/5.32062.
|
| [4] |
HOSSAIN M B, FARUQUE M R I, ISLAM M T, et al. Triple band microwave metamaterial absorber based on double E-shaped symmetric split ring resonators for EMI shielding and stealth applications[J]. Journal of Materials Research and Technology, 2022, 18: 1653–1668. doi: 10.1016/j.jmrt.2022.03.079.
|
| [5] |
WU Yue, TAN Shujuan, ZHAO Yue, et al. Broadband multispectral compatible absorbers for radar, infrared and visible stealth application[J]. Progress in Materials Science, 2023, 135: 101088. doi: 10.1016/j.pmatsci.2023.101088.
|
| [6] |
GUO Lei, FANG Haiting, SUN Yuxiang, et al. A low-profile and broadband pattern-reconfigurable dielectric resonator antenna with wide spatial coverage[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(10): 8296–8301. doi: 10.1109/TAP.2023.3293013.
|
| [7] |
GUO Lei, LI Xuwang, SUN Wenjian, et al. Designing and modeling of a dual-band rectenna with compact dielectric resonator antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(5): 1046–1050. doi: 10.1109/LAWP.2022.3157322.
|
| [8] |
王文涛, 黄家露. 基于有源对消的装甲目标被动毫米波隐身技术研究[J]. 电子与信息学报, 2022, 44(12): 4178–4184. doi: 10.11999/JEIT210944.
WANG Wentao and HUANG Jialu. Research on passive millimeter-wave stealth technology based on active cancellation for armored target[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4178–4184. doi: 10.11999/JEIT210944.
|
| [9] |
ZHANG Chengyun, ZHANG Bingfeng, GE Shuangkang, et al. Compatible metasurface for ultra-wideband radar and switchable infrared stealth[J]. Optics Express, 2024, 32(18): 31359–31374. doi: 10.1364/OE.533691.
|
| [10] |
HU Jie, BANDYOPADHYAY S, LIU Yuhui, et al. A review on metasurface: From principle to smart metadevices[J]. Frontiers in Physics, 2021, 8: 586087. doi: 10.3389/fphy.2020.586087.
|
| [11] |
WANG Hailin, MA Huifeng, CHEN Mao, et al. A reconfigurable multifunctional metasurface for full-space control of electromagnetic waves[J]. Advanced Functional Materials, 2021, 31(25): 2100275. doi: 10.1002/adfm.202100275.
|
| [12] |
胡杰, 唐紫依, 蓝翔, 等. 基于相变材料 Ge2Sb2Se4Te1 的可切换边缘检测与聚焦成像超表面[J]. 光电工程, 2023, 50(8): 220284. doi: 10.12086/oee.2023.220284.
HU Jie, TANG Ziyi, LAN Xiang, et al. Switchable edge detection and imaging based on a phase-change metasurface with Ge2Sb2Se4Te1[J]. Opto-Electronic Engineering, 2023, 50(8): 220284. doi: 10.12086/oee.2023.220284.
|
| [13] |
马依泽, 李春树, 马鑫, 等. 基于超表面的极化转换和雷达散射截面缩减设计[J]. 光电工程, 2025, 52(10): 250183. doi: 10.12086/oee.2025.250183.
MA Yize, LI Chunshu, MA Xin, et al. Design of polarization conversion and radar cross-section reduction based on metasurfaces[J]. Opto-Electronic Engineering, 2025, 52(10): 250183. doi: 10.12086/oee.2025.250183.
|
| [14] |
KHAN H A, MAJEED A, ZAHRA H, et al. Transparent conformal metasurface absorber for ultrawideband radar cross section reduction[J]. Journal of Physics D: Applied Physics, 2024, 57(13): 135105. doi: 10.1088/1361-6463/ad1951.
|
| [15] |
LI Yanling, XU Jianfeng, LIU Fuhai, et al. Broadband achromatic transmission stealth cloak based on all dielectric metasurfaces[J]. Physica Scripta, 2024, 99(7): 075536. doi: 10.1088/1402-4896/ad5803.
|
| [16] |
SHI Haoyang, TIAN Jie, CHEN Nengfu, et al. Wideband high-efficiency scattering reduction in a graphene based optically transparent and flexible metasurface[J]. Carbon, 2024, 225: 119150. doi: 10.1016/j.carbon.2024.119150.
|
| [17] |
LIU Yahong and ZHAO Xiaopeng. Perfect absorber metamaterial for designing low-RCS patch antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1473–1476. doi: 10.1109/LAWP.2014.2341299.
|
| [18] |
GUO Yuan, DUAN Yuping, LIU Xiaoji, et al. Construction of rGO/MOF-derived CNTs aerogel with multiple losses for multi-functional efficient electromagnetic wave absorber[J]. Carbon, 2024, 230: 119591. doi: 10.1016/j.carbon.2024.119591.
|
| [19] |
YANG Xuan, XUAN Lixin, MEN Weiwei, et al. Carbonyl iron/glass fiber cloth composites: Achieving multi-spectrum stealth in a wide temperature range[J]. Chemical Engineering Journal, 2024, 491: 151862. doi: 10.1016/j.cej.2024.151862.
|
| [20] |
CHEN Wei, DUAN Yuping, GU Shude, et al. Resonator-free metamaterials based on ferromagnetic dielectrics for mandatory microwave loss and compact stealth cloaks[J]. Advanced Materials, 2025, 37(39): 2507366. doi: 10.1002/adma.202507366.
|
| [21] |
DUAN Yuping, XIA Chenyang, CHEN Wei, et al. A bio-inspired broadband absorption metamaterial: Driven by dual-structure synergistically induced current vortices[J]. Journal of Materials Science & Technology, 2025, 206: 193–201. doi: 10.1016/j.jmst.2024.03.053.
|
| [22] |
GUO Yuan, DUAN Yuping, GU Shude, et al. Carbon nanocoils-assisted formation of tunable pore graphene aerogels for lightweight broadband microwave absorption, thermal insulation, and antifreeze devices[J]. Small, 2025, 21(10): 2412270. doi: 10.1002/smll.202412270.
|
| [23] |
LI Zerui, DUAN Yuping, LIU Xiaoji, et al. Strategy-induced strong exchange interaction for enhancing high-temperature magnetic loss in high-entropy alloy powders[J]. Advanced Functional Materials, 2025, 35(44): 2507152. doi: 10.1002/adfm.202507152.
|
| [24] |
LIU Xiaoji, DUAN Yuping, WU Nan, et al. Modulating electromagnetic genes through Bi-phase high-entropy engineering toward temperature-stable ultra-broadband megahertz electromagnetic wave absorption[J]. Nano-Micro Letters, 2025, 17(1): 164. doi: 10.1007/s40820-024-01638-4.
|
| [25] |
ZHAO Yi, CAO Xiangyu, GAO Jun, et al. Broadband low-RCS metasurface and its application on antenna[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(7): 2954–2962. doi: 10.1109/TAP.2016.2562665.
|
| [26] |
CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218. doi: 10.1038/lsa.2014.99.
|
| [27] |
XI Yan, JIANG Wen, WEI Kun, et al. Wideband RCS reduction of microstrip antenna array using coding metasurface with low Q resonators and fast optimization method[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(4): 656–660. doi: 10.1109/LAWP.2021.3138241.
|
| [28] |
XU Guoqing, KANG Qianlong, ZHANG Xizheng, et al. High-performance long-wavelength infrared Switchable stealth based on In3SbTe2 metasurface[J]. International Journal of Thermal Sciences, 2025, 207: 109392. doi: 10.1016/j.ijthermalsci.2024.109392.
|
| [29] |
WANG Lei, DONG Jian, ZHANG Wenjie, et al. Deep learning assisted optimization of metasurface for multi-band compatible infrared stealth and radiative thermal management[J]. Nanomaterials, 2023, 13(6): 1030. doi: 10.3390/nano13061030.
|
| [30] |
PANG Huifang, DUAN Yuping, HUANG Lingxi, et al. Research advances in composition, structure and mechanisms of microwave absorbing materials[J]. Composites Part B: Engineering, 2021, 224: 109173. doi: 10.1016/j.compositesb.2021.109173.
|
| [31] |
KNOTT E F, SHAEFFER J F, and TULEY M T. Radar Cross Section[M]. 2nd ed. Raleigh: SciTech Publishing, 2004: 241.
|
| [32] |
SALISBURY J W, WALD A, and D’ARIA D M. Thermal-infrared remote sensing and Kirchhoff's law: 1. Laboratory measurements[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B6): 11897–11911. doi: 10.1029/93JB03600.
|
| [33] |
ZHANG Ming, ZHANG Najiao, DONG Peng, et al. All-metal coding metasurfaces for broadband terahertz RCS reduction and infrared invisibility[J]. Photonics, 2023, 10(9): 962. doi: 10.3390/photonics10090962.
|
| [34] |
LAMBORA A, GUPTA K, and CHOPRA K. Genetic algorithm- A literature review[C]. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 2019: 380–384. doi: 10.1109/COMITCon.2019.8862255.
|
| [35] |
SONG Rongguo, SI Yunfa, QIAN Wei, et al. Investigation of MXene nanosheets based radio-frequency electronics by skin depth effect[J]. Nano Research, 2024, 17(4): 3061–3067. doi: 10.1007/s12274-023-6127-7.
|
| [36] |
LIU Xiao, GAO Jun, XU Liming, et al. A coding diffuse metasurface for RCS reduction[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 724–727. doi: 10.1109/LAWP.2016.2601108.
|
| [37] |
SAIFULLAH Y, WAQAS A B, YANG Guomin, et al. Multi-bit dielectric coding metasurface for EM wave manipulation and anomalous reflection[J]. Optics Express, 2020, 28(2): 1139–1149. doi: 10.1364/OE.383214.
|
| [38] |
HAN Xinmin, XU Haojun, CHANG Yipeng, et al. Multiple diffuse coding metasurface of independent polarization for RCS reduction[J]. IEEE Access, 2020, 8: 162313–162321. doi: 10.1109/ACCESS.2020.3021650.
|
| [39] |
FU Changfeng, HAN Lianfu, LIU Chao, et al. Combining pancharatnam–berry phase and conformal coding metasurface for dual-band RCS reduction[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(3): 2352–2357. doi: 10.1109/TAP.2021.3112618.
|
| [40] |
XU Cuilian, WANG Binke, YAN Mingbao, et al. An optically transparent sandwich structure for radar-infrared bi-stealth[J]. Infrared Physics & Technology, 2020, 105: 103108. doi: 10.1016/j.infrared.2019.103108.
|
| [41] |
ZHANG Zekui, ZHANG Leipeng, REN Zichen, et al. Multifunctional ultrathin metasurface with a low radar cross section and variable infrared emissivity[J]. ACS Applied Materials & Interfaces, 2024, 16(16): 21109–21117. doi: 10.1021/acsami.4c01798.
|