Advanced Search
Turn off MathJax
Article Contents
ZHANG Ming, ZHANG Najiao, LI Jialei, LI Kang, MELIKYAN MELIKYAN, YANG Lin, HOU Weimin. Genetic-Algorithm-Optimized All-Metal Metasurface for Cross-Band Stealth via Low-cost CNC Fabrication[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251080
Citation: ZHANG Ming, ZHANG Najiao, LI Jialei, LI Kang, MELIKYAN MELIKYAN, YANG Lin, HOU Weimin. Genetic-Algorithm-Optimized All-Metal Metasurface for Cross-Band Stealth via Low-cost CNC Fabrication[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251080

Genetic-Algorithm-Optimized All-Metal Metasurface for Cross-Band Stealth via Low-cost CNC Fabrication

doi: 10.11999/JEIT251080 cstr: 32379.14.JEIT251080
Funds:  National Key Research and Development Program of China (No. 2022YFB4400400), National Natural Science Foundation of China (No.62105093 and 62441401), National Key Laboratory of Basic Scientific Research for Innovation Fund (No. IFN20230113), the Major Science and Technology Support Project of Hebei Province (No.24290201Z), Science and Technology Project of Hebei Education Department (No. BJK2023036)
  • Accepted Date: 2026-01-30
  • Rev Recd Date: 2026-01-30
  • Available Online: 2026-02-14
  •   Objective  Traditional electromagnetic stealth materials face the practical challenge of simultaneously achieving both microwave absorption and infrared stealth, while conventional solutions (geometric optimization, multi-layer composite coatings) have drawbacks like narrowband operation, complex fabrication, and poor cross-band compatibility. This study aims to propose a genetic algorithm-optimized all-metal random coding metasurface, which enables concurrent broadband radar cross section (RCS) reduction and low infrared emissivity on a monolithic metallic platform, thus addressing the above implementation hurdles.  Methods  We employ monolithic all-metal C-shaped resonant units (based on the Pancharatnam–Berry (几何) geometric phase, with reflection phase regulated by rotation angle), and design 2/3/4-bit coding (corresponding to 4/8/16 discrete phase states). A MATLAB-CST co-simulation framework is established (CST extracts unit responses via the finite element method (FEM), while MATLAB uses a genetic algorithm to optimize phase distribution for scattering energy diffusion). All-metal metasurface prototypes (150×150 mm2, 10×10 array) are fabricated via computer numerical control (CNC) cutting processing.  Results and Discussions  Genetic algorithm optimization converges within 6–8 generations, and increased coding bits enhance phase randomness. The 4-bit metasurface achieves an average 10 dB RCS reduction over 11–18.4 GHz, with consistent simulation and anechoic chamber measurement results under 0–60° oblique incidence. Infrared imaging verifies its low emissivity. Compared with traditional composite/multi-layer structures, the all-metal design simplifies fabrication, avoids interfacial mismatches, and ensures structural stability, exhibiting broadband, wide-angle, and cross-band stealth performance.  Conclusions  This study presents a genetic algorithm-optimized all-metal random coding metasurface that achieves cross-band stealth compatibility for the first time, overcoming the long-standing challenge of concurrently realizing both microwave performance and thermal management in conventional stealth materials. The work advances the field through three key innovations: 1) The monolithic copper structure enables >99.9% infrared reflectivity (8–14 μm band, via FLIR imaging) and an average 10 dB RCS reduction over 11–18.4 GHz; 2) The single-material design eliminates delamination risks, and the CNC-fabricated prototype maintains structural integrity under 60° oblique incidence, reducing fabrication costs by ~78% compared to lithography; 3) The co-simulation framework converges in 8 generations (for 4-bit coding), enabling 7.4 GHz broadband scattering manipulation. This metasurface combines fabrication reliability, cost-effectiveness, and dual-band performance, laying critical groundwork for large-scale deployment in military stealth systems and satellite platforms where multispectral concealment and durability are paramount.
  • loading
  • [1]
    RAN Yuzhou, SHI Lihua, WU Shuran, et al. Optically transparent ultrawideband electromagnetic stealth metasurface for microwave absorption and scattering[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(12): 2412–2416. doi: 10.1109/LAWP.2022.3194724.
    [2]
    王谦喆, 何召阳, 宋博文, 等. 射频隐身技术研究综述[J]. 电子与信息学报, 2018, 40(6): 1505–1514. doi: 10.11999/JEIT170945.

    WANG Qianzhe, HE Zhaoyang, SONG Bowen, et al. Overview on RF stealth technology research[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1505–1514. doi: 10.11999/JEIT170945.
    [3]
    YOUSSEF N N. Radar cross section of complex targets[J]. Proceedings of the IEEE, 1989, 77(5): 722–734. doi: 10.1109/5.32062.
    [4]
    HOSSAIN M B, FARUQUE M R I, ISLAM M T, et al. Triple band microwave metamaterial absorber based on double E-shaped symmetric split ring resonators for EMI shielding and stealth applications[J]. Journal of Materials Research and Technology, 2022, 18: 1653–1668. doi: 10.1016/j.jmrt.2022.03.079.
    [5]
    WU Yue, TAN Shujuan, ZHAO Yue, et al. Broadband multispectral compatible absorbers for radar, infrared and visible stealth application[J]. Progress in Materials Science, 2023, 135: 101088. doi: 10.1016/j.pmatsci.2023.101088.
    [6]
    GUO Lei, FANG Haiting, SUN Yuxiang, et al. A low-profile and broadband pattern-reconfigurable dielectric resonator antenna with wide spatial coverage[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(10): 8296–8301. doi: 10.1109/TAP.2023.3293013.
    [7]
    GUO Lei, LI Xuwang, SUN Wenjian, et al. Designing and modeling of a dual-band rectenna with compact dielectric resonator antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(5): 1046–1050. doi: 10.1109/LAWP.2022.3157322.
    [8]
    王文涛, 黄家露. 基于有源对消的装甲目标被动毫米波隐身技术研究[J]. 电子与信息学报, 2022, 44(12): 4178–4184. doi: 10.11999/JEIT210944.

    WANG Wentao and HUANG Jialu. Research on passive millimeter-wave stealth technology based on active cancellation for armored target[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4178–4184. doi: 10.11999/JEIT210944.
    [9]
    ZHANG Chengyun, ZHANG Bingfeng, GE Shuangkang, et al. Compatible metasurface for ultra-wideband radar and switchable infrared stealth[J]. Optics Express, 2024, 32(18): 31359–31374. doi: 10.1364/OE.533691.
    [10]
    HU Jie, BANDYOPADHYAY S, LIU Yuhui, et al. A review on metasurface: From principle to smart metadevices[J]. Frontiers in Physics, 2021, 8: 586087. doi: 10.3389/fphy.2020.586087.
    [11]
    WANG Hailin, MA Huifeng, CHEN Mao, et al. A reconfigurable multifunctional metasurface for full-space control of electromagnetic waves[J]. Advanced Functional Materials, 2021, 31(25): 2100275. doi: 10.1002/adfm.202100275.
    [12]
    胡杰, 唐紫依, 蓝翔, 等. 基于相变材料 Ge2Sb2Se4Te1 的可切换边缘检测与聚焦成像超表面[J]. 光电工程, 2023, 50(8): 220284. doi: 10.12086/oee.2023.220284.

    HU Jie, TANG Ziyi, LAN Xiang, et al. Switchable edge detection and imaging based on a phase-change metasurface with Ge2Sb2Se4Te1[J]. Opto-Electronic Engineering, 2023, 50(8): 220284. doi: 10.12086/oee.2023.220284.
    [13]
    马依泽, 李春树, 马鑫, 等. 基于超表面的极化转换和雷达散射截面缩减设计[J]. 光电工程, 2025, 52(10): 250183. doi: 10.12086/oee.2025.250183.

    MA Yize, LI Chunshu, MA Xin, et al. Design of polarization conversion and radar cross-section reduction based on metasurfaces[J]. Opto-Electronic Engineering, 2025, 52(10): 250183. doi: 10.12086/oee.2025.250183.
    [14]
    KHAN H A, MAJEED A, ZAHRA H, et al. Transparent conformal metasurface absorber for ultrawideband radar cross section reduction[J]. Journal of Physics D: Applied Physics, 2024, 57(13): 135105. doi: 10.1088/1361-6463/ad1951.
    [15]
    LI Yanling, XU Jianfeng, LIU Fuhai, et al. Broadband achromatic transmission stealth cloak based on all dielectric metasurfaces[J]. Physica Scripta, 2024, 99(7): 075536. doi: 10.1088/1402-4896/ad5803.
    [16]
    SHI Haoyang, TIAN Jie, CHEN Nengfu, et al. Wideband high-efficiency scattering reduction in a graphene based optically transparent and flexible metasurface[J]. Carbon, 2024, 225: 119150. doi: 10.1016/j.carbon.2024.119150.
    [17]
    LIU Yahong and ZHAO Xiaopeng. Perfect absorber metamaterial for designing low-RCS patch antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1473–1476. doi: 10.1109/LAWP.2014.2341299.
    [18]
    GUO Yuan, DUAN Yuping, LIU Xiaoji, et al. Construction of rGO/MOF-derived CNTs aerogel with multiple losses for multi-functional efficient electromagnetic wave absorber[J]. Carbon, 2024, 230: 119591. doi: 10.1016/j.carbon.2024.119591.
    [19]
    YANG Xuan, XUAN Lixin, MEN Weiwei, et al. Carbonyl iron/glass fiber cloth composites: Achieving multi-spectrum stealth in a wide temperature range[J]. Chemical Engineering Journal, 2024, 491: 151862. doi: 10.1016/j.cej.2024.151862.
    [20]
    CHEN Wei, DUAN Yuping, GU Shude, et al. Resonator-free metamaterials based on ferromagnetic dielectrics for mandatory microwave loss and compact stealth cloaks[J]. Advanced Materials, 2025, 37(39): 2507366. doi: 10.1002/adma.202507366.
    [21]
    DUAN Yuping, XIA Chenyang, CHEN Wei, et al. A bio-inspired broadband absorption metamaterial: Driven by dual-structure synergistically induced current vortices[J]. Journal of Materials Science & Technology, 2025, 206: 193–201. doi: 10.1016/j.jmst.2024.03.053.
    [22]
    GUO Yuan, DUAN Yuping, GU Shude, et al. Carbon nanocoils-assisted formation of tunable pore graphene aerogels for lightweight broadband microwave absorption, thermal insulation, and antifreeze devices[J]. Small, 2025, 21(10): 2412270. doi: 10.1002/smll.202412270.
    [23]
    LI Zerui, DUAN Yuping, LIU Xiaoji, et al. Strategy-induced strong exchange interaction for enhancing high-temperature magnetic loss in high-entropy alloy powders[J]. Advanced Functional Materials, 2025, 35(44): 2507152. doi: 10.1002/adfm.202507152.
    [24]
    LIU Xiaoji, DUAN Yuping, WU Nan, et al. Modulating electromagnetic genes through Bi-phase high-entropy engineering toward temperature-stable ultra-broadband megahertz electromagnetic wave absorption[J]. Nano-Micro Letters, 2025, 17(1): 164. doi: 10.1007/s40820-024-01638-4.
    [25]
    ZHAO Yi, CAO Xiangyu, GAO Jun, et al. Broadband low-RCS metasurface and its application on antenna[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(7): 2954–2962. doi: 10.1109/TAP.2016.2562665.
    [26]
    CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218. doi: 10.1038/lsa.2014.99.
    [27]
    XI Yan, JIANG Wen, WEI Kun, et al. Wideband RCS reduction of microstrip antenna array using coding metasurface with low Q resonators and fast optimization method[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(4): 656–660. doi: 10.1109/LAWP.2021.3138241.
    [28]
    XU Guoqing, KANG Qianlong, ZHANG Xizheng, et al. High-performance long-wavelength infrared Switchable stealth based on In3SbTe2 metasurface[J]. International Journal of Thermal Sciences, 2025, 207: 109392. doi: 10.1016/j.ijthermalsci.2024.109392.
    [29]
    WANG Lei, DONG Jian, ZHANG Wenjie, et al. Deep learning assisted optimization of metasurface for multi-band compatible infrared stealth and radiative thermal management[J]. Nanomaterials, 2023, 13(6): 1030. doi: 10.3390/nano13061030.
    [30]
    PANG Huifang, DUAN Yuping, HUANG Lingxi, et al. Research advances in composition, structure and mechanisms of microwave absorbing materials[J]. Composites Part B: Engineering, 2021, 224: 109173. doi: 10.1016/j.compositesb.2021.109173.
    [31]
    KNOTT E F, SHAEFFER J F, and TULEY M T. Radar Cross Section[M]. 2nd ed. Raleigh: SciTech Publishing, 2004: 241.
    [32]
    SALISBURY J W, WALD A, and D’ARIA D M. Thermal-infrared remote sensing and Kirchhoff's law: 1. Laboratory measurements[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B6): 11897–11911. doi: 10.1029/93JB03600.
    [33]
    ZHANG Ming, ZHANG Najiao, DONG Peng, et al. All-metal coding metasurfaces for broadband terahertz RCS reduction and infrared invisibility[J]. Photonics, 2023, 10(9): 962. doi: 10.3390/photonics10090962.
    [34]
    LAMBORA A, GUPTA K, and CHOPRA K. Genetic algorithm- A literature review[C]. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 2019: 380–384. doi: 10.1109/COMITCon.2019.8862255.
    [35]
    SONG Rongguo, SI Yunfa, QIAN Wei, et al. Investigation of MXene nanosheets based radio-frequency electronics by skin depth effect[J]. Nano Research, 2024, 17(4): 3061–3067. doi: 10.1007/s12274-023-6127-7.
    [36]
    LIU Xiao, GAO Jun, XU Liming, et al. A coding diffuse metasurface for RCS reduction[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 724–727. doi: 10.1109/LAWP.2016.2601108.
    [37]
    SAIFULLAH Y, WAQAS A B, YANG Guomin, et al. Multi-bit dielectric coding metasurface for EM wave manipulation and anomalous reflection[J]. Optics Express, 2020, 28(2): 1139–1149. doi: 10.1364/OE.383214.
    [38]
    HAN Xinmin, XU Haojun, CHANG Yipeng, et al. Multiple diffuse coding metasurface of independent polarization for RCS reduction[J]. IEEE Access, 2020, 8: 162313–162321. doi: 10.1109/ACCESS.2020.3021650.
    [39]
    FU Changfeng, HAN Lianfu, LIU Chao, et al. Combining pancharatnam–berry phase and conformal coding metasurface for dual-band RCS reduction[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(3): 2352–2357. doi: 10.1109/TAP.2021.3112618.
    [40]
    XU Cuilian, WANG Binke, YAN Mingbao, et al. An optically transparent sandwich structure for radar-infrared bi-stealth[J]. Infrared Physics & Technology, 2020, 105: 103108. doi: 10.1016/j.infrared.2019.103108.
    [41]
    ZHANG Zekui, ZHANG Leipeng, REN Zichen, et al. Multifunctional ultrathin metasurface with a low radar cross section and variable infrared emissivity[J]. ACS Applied Materials & Interfaces, 2024, 16(16): 21109–21117. doi: 10.1021/acsami.4c01798.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (16) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return