| Citation: | HAO Lijiang, TIAN Luyun, SUN Peng, CHEN Jian, LIU Pengying, HE Guangjun, LOU Shuqin. Remote Sensing Data Intelligent Interpretation Task Scheduling Algorithm Based on Heterogeneous Platform[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251072 |
| [1] |
孟麟芝, 孙小涓, 胡玉新, 等. 面向卫星在轨处理的强化学习任务调度算法[J]. 系统工程与电子技术, 2025, 47(6): 1917–1929. doi: 10.12305/j.issn.1001-506X.2025.06.20.
MENG Linzhi, SUN Xiaojuan, HU Yuxin, et al. Reinforcement learning task scheduling algorithm for satellite on-orbit processing[J]. Systems Engineering and Electronics, 2025, 47(6): 1917–1929. doi: 10.12305/j.issn.1001-506X.2025.06.20.
|
| [2] |
MEI Shaohui, LIAN Jiawei, WANG Xiaofei, et al. A comprehensive study on the robustness of deep learning-based image classification and object detection in remote sensing: Surveying and benchmarking[J]. Journal of Remote Sensing, 2024, 4: 0219. doi: 10.34133/remotesensing.0219.
|
| [3] |
LIU Quanyong, PENG Jiangtao, ZHANG Genwei, et al. Deep contrastive learning network for small-sample hyperspectral image classification[J]. Journal of Remote Sensing, 2023, 3: 0025. doi: 10.34133/remotesensing.0025.
|
| [4] |
GROSOF I, YANG Kunhe, SCULLY Z, et al. Nudge: Stochastically improving upon FCFS[C/OL]. 2021 ACM SIGMETRICS/International Conference on Measurement and Modeling of Computer Systems, 2021: 11–12. doi: 10.1145/3410220.3460102.
|
| [5] |
PACHIPALA Y, SUREDDY K S, SRIYA KAITEPALLI A B S, et al. Optimizing task scheduling in cloud computing: An enhanced shortest job first algorithm[J]. Procedia Computer Science, 2024, 233: 604–613. doi: 10.1016/j.procs.2024.03.250.
|
| [6] |
BUSENHART C, HUNGERBÜHLER N, and XU W. A variant of the round-robin scheduling problem[J]. Ars Combinatoria, 2024, 158: 81–92. doi: 10.61091/ars158-09.
|
| [7] |
ABO-ALSABEH R and SALHI A. The genetic algorithm: A study survey[J]. Iraqi Journal of Science, 2022, 63(3): 1215–1231. doi: 10.24996/ijs.2022.63.3.27.
|
| [8] |
JIANG Qiangqiang, WANG Haipeng, KONG Qinglei, et al. On-orbit remote sensing image processing complex task scheduling model based on heterogeneous multiprocessor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1001718. doi: 10.1109/TGRS.2023.3327279.
|
| [9] |
沈小龙, 马金全, 冀亚玮, 等. 面向异构处理平台任务调度的麻雀优化算法[J]. 电子科技, 2024, 37(1): 33–40. doi: 10.16180/j.cnki.issn1007-7820.2024.01.005.
SHEN Xiaolong, MA Jinquan, JI Yawei, et al. Sparrow optimization algorithm for task scheduling of heterogeneous processing platform[J]. Electronic Science and Technology, 2024, 37(1): 33–40. doi: 10.16180/j.cnki.issn1007-7820.2024.01.005.
|
| [10] |
郑雨昊, 唐琴琴, 谢人超, 等. 面向星地融合网络资源优化的智能任务调度机制[J]. 移动通信, 2025, 49(6): 52–58. doi: 10.3969/j.issn.1006-1010.20250422-0001.
ZHENG Yuhao, TANG Qinqin, XIE Renchao, et al. Intelligent task scheduling mechanism for resource optimization in satellite-terrestrial integrated networks[J]. Mobile Communications, 2025, 49(6): 52–58. doi: 10.3969/j.issn.1006-1010.20250422-0001.
|
| [11] |
HUANG Jiaming, XIAO Chuming, and WU Weigang. RLSK: A job scheduler for federated Kubernetes clusters based on reinforcement learning[C/OL]. 2020 IEEE International Conference on Cloud Engineering (IC2E), Sydney, 2020: 116–123. doi: 10.1109/IC2E48712.2020.00019.
|
| [12] |
童钊, 邓小妹, 陈洪剑, 等. 云环境下基于强化学习的多目标任务调度算法[J]. 小型微型计算机系统, 2020, 41(2): 285–290. doi: 10.3969/j.issn.1000-1220.2020.02.010.
TONG Zhao, DENG Xiaomei, CHEN Hongjian, et al. Multi-objective task scheduling algorithm based on reinforcement learning in cloud environments[J]. Journal of Chinese Computer Systems, 2020, 41(2): 285–290. doi: 10.3969/j.issn.1000-1220.2020.02.010.
|
| [13] |
ZHANG Jianxiong, GUO Bing, DING Xuefeng, et al. An adaptive multi-objective multi-task scheduling method by hierarchical deep reinforcement learning[J]. Applied Soft Computing, 2024, 154: 111342. doi: 10.1016/j.asoc.2024.111342.
|
| [14] |
周黎鸣, 余汐, 范明虎, 等. 基于双深度Q网络的多目标遥感产品生产任务调度算法[J]. 电子与信息学报, 2025, 47(8): 2819–2829. doi: 10.11999/JEIT250089.
ZHOU Liming, YU Xi, FAN Minghu, et al. Multi-objective remote sensing product production task scheduling algorithm based on double deep Q-network[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2819–2829. doi: 10.11999/JEIT250089.
|
| [15] |
HAN Bao’an and YANG Jianjun. Research on adaptive job shop scheduling problems based on dueling double DQN[J]. IEEE Access, 2020, 8: 186474–186495. doi: 10.1109/ACCESS.2020.3029868.
|
| [16] |
AGHAEI M, ASGHARI P, ADABI S, et al. Using recommender clustering to improve quality of services with sustainable virtual machines in cloud computing[J]. Cluster Computing, 2023, 26(2): 1479–1493. doi: 10.1007/s10586-022-03760-7.
|
| [17] |
KUCHUK H, MOZHAIEV O, KUCHUK N, et al. Devising a method for the virtual clustering of the internet of things edge environment[J]. Eastern-European Journal of Enterprise Technologies, 2024, 1(9): 60–71. doi: 10.15587/1729-4061.2024.298431.
|
| [18] |
GHASEMI A and KESHAVARZI A. Energy-efficient virtual machine placement in heterogeneous cloud data centers: A clustering-enhanced multi-objective, multi-reward reinforcement learning approach[J]. Cluster Computing, 2024, 27(10): 14149–14166. doi: 10.1007/s10586-024-04657-3.
|
| [19] |
HAN Xiaoyun, MU Chaoxu, ZHU Jiebei, et al. A safe virtual machine scheduling strategy for energy conservation and privacy protection of server clusters in cloud data centers[J]. IEEE Transactions on Sustainable Computing, 2024, 9(1): 46–60. doi: 10.1109/TSUSC.2023.3303637.
|
| [20] |
刘明轩, 郭博渊, 刘曦, 等. 一种用于星载虚拟化平台的任务容器调度算法[J]. 西北工业大学学报, 2024, 42(2): 319–327. doi: 10.1051/jnwpu/20244220319.
LIU Mingxuan, GUO Boyuan, LIU Xi, et al. A task container scheduling algorithm for spaceborne virtualization platform[J]. Journal of Northwestern Polytechnical University, 2024, 42(2): 319–327. doi: 10.1051/jnwpu/20244220319.
|
| [21] |
ALTAHAT M A, DARADKEH T, and AGARWAL A. Virtual machine scheduling and migration management across multi-cloud data centers: Blockchain-based versus centralized frameworks[J]. Journal of Cloud Computing, 2015, 14(1): 1. doi: 10.1186/s13677-024-00724-7.
|
| [22] |
刘柳, 凡益民, 刘田, 等. 一种基于核数分配的任务智能调度方法[J]. 电波科学学报, 2025, 40(2): 246–251,275. doi: 10.12265/j.cjors.2024115.
LIU Liu, FAN Yimin, LIU Tian, et al. A task intelligent scheduling method based on the number of cores[J]. Chinese Journal of Radio Science, 2025, 40(2): 246–251,275. doi: 10.12265/j.cjors.2024115.
|
| [23] |
CHO W H, SHMOYS D, and HENDERSON S. SPT optimality (mostly) via linear programming[J]. Operations Research Letters, 2023, 51(1): 99–104. doi: 10.1016/j.orl.2022.12.007.
|
| [24] |
GRAHAM R L. Bounds on multiprocessing timing anomalies[J]. SIAM Journal on Applied Mathematics, 1969, 17(2): 416–429. doi: 10.1137/0117039.
|
| [25] |
VAISHNAV A, PHAM K D, and KOCH D. Heterogeneous resource-elastic scheduling for CPU+FPGA architectures[C]. The 10th International Symposium on Highly-Efficient Accelerators and Reconfigurable Technologies, New York, USA, 2019: 1. doi: 10.1145/3337801.3337819.
|
| [26] |
BHUIYAN A, LIU Di, KHAN A, et al. Energy-efficient parallel real-time scheduling on clustered multi-core[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 31(9): 2097–2111. doi: 10.1109/TPDS.2020.2985701.
|
| [27] |
ZOU An, XU Yuankai, NI Yinchen, et al. A survey of real-time scheduling on accelerator-based heterogeneous architecture for time critical applications[EB/OL]. https://arxiv.org/abs/2505.11970, 2025.
|
| [28] |
KOBAYASHI T and ILBOUDO W E L. t-soft update of target network for deep reinforcement learning[J]. Neural Networks, 2021, 136: 63–71. doi: 10.1016/j.neunet.2020.12.023.
|