| Citation: | YUAN Lin, WU Yanshang, ZHANG Liyuan, ZHANG Yushu, WANG Nannan, GAO Xinbo. Privacy-Preserving Computation in Trustworthy Face Recognition: A Comprehensive Survey[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251063 |
| [1] |
TURK M A and PENTLAND A P. Face recognition using eigenfaces[C]. Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Maui, USA, 1991: 586–591. doi: 10.1109/CVPR.1991.139758.
|
| [2] |
SCHROFF F, KALENICHENKO D, and PHILBIN J. FaceNet: A unified embedding for face recognition and clustering[C]. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 815–823. doi: 10.1109/CVPR.2015.7298682.
|
| [3] |
DENG Jiankang, GUO Jia, YANG Jing, et al. ArcFace: Additive angular margin loss for deep face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(10): 5962–5979. doi: 10.1109/TPAMI.2021.3087709.
|
| [4] |
KIM M, JAIN A K, and LIU Xiaoming. AdaFace: Quality adaptive margin for face recognition[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 18729–18738. doi: 10.1109/CVPR52688.2022.01819.
|
| [5] |
SUN Zhonglin, SONG Siyang, PATRAS I, et al. CemiFace: Center-based semi-hard synthetic face generation for face recognition[C]. Proceedings of the 37th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2024: 35612–35638. doi: 10.52202/079017-1123.
|
| [6] |
BOUTROS F, HUBER M, SIEBKE P, et al. SFace: Privacy-friendly and accurate face recognition using synthetic data[C]. 2022 IEEE International Joint Conference on Biometrics, Abu Dhabi, United Arab Emirates, 2022: 1–11. doi: 10.1109/IJCB54206.2022.10007961.
|
| [7] |
QIU Haibo, YU Baosheng, GONG Dihong, et al. SynFace: Face recognition with synthetic data[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 10860–10870. doi: 10.1109/ICCV48922.2021.01070.
|
| [8] |
KIM M, LIU Feng, JAIN A, et al. DCFace: Synthetic face generation with dual condition diffusion model[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 12715–12725. doi: 10.1109/CVPR52729.2023.01223.
|
| [9] |
WANG Yinggui, LIU Jian, LUO Man, et al. Privacy-preserving face recognition in the frequency domain[C]. Proceedings of the 36th AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2022: 2558–2566. doi: 10.1609/aaai.v36i3.20157. (查阅网上资料,未找到本条文献出版地信息,请确认).
|
| [10] |
MI Yuxi, HUANG Yuge, JI Jiazhen, et al. DuetFace: Collaborative privacy-preserving face recognition via channel splitting in the frequency domain[C]. Proceedings of the 30th ACM International Conference on Multimedia, Lisboa, Portugal, 2022: 6755–6764. doi: 10.1145/3503161.3548303.
|
| [11] |
SHOKRI R, STRONATI M, SONG Congzheng, et al. Membership inference attacks against machine learning models[C]. 2017 IEEE Symposium on Security and Privacy, San Jose, USA, 2017: 3–18. doi: 10.1109/sp.2017.41.
|
| [12] |
SHAHREZA H O and MARCEL S. Unveiling synthetic faces: How synthetic datasets can expose real identities[C]. Proceedings of the Third Workshop on New Frontiers in Adversarial Machine Learning, Vancouver, Canada, 2024.
|
| [13] |
ZHU Ligeng, LIU Zhijian, and HAN Song. Deep leakage from gradients[C]. Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 1323.
|
| [14] |
LIU Yufan, ZHANG Wanqian, WU Dayan, et al. Prediction exposes your face: Black-box model inversion via prediction alignment[C]. Proceedings of the 18th European Conference on Computer Vision, Milan, Italy, 2025: 288–306. doi: 10.1007/978-3-031-72764-1_17.
|
| [15] |
ZHANG Hui, DONG Xingbo, LAI Y, et al. Validating privacy-preserving face recognition under a minimum assumption[C]. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 12205–12214. doi: 10.1109/CVPR52733.2024.01160.
|
| [16] |
SHAHREZA H O and MARCEL S. Template inversion attack against face recognition systems using 3D face reconstruction[C]. 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 19605–19615. doi: 10.1109/ICCV51070.2023.01801.
|
| [17] |
SHAHREZA H O and MARCEL S. Face reconstruction from facial templates by learning latent space of a generator network[C]. Proceedings of the 37th International Conference on Neural Information Processing Systems, New Orleans, USA, 2023: 557.
|
| [18] |
BODDETI V N. Secure face matching using fully homomorphic encryption[C]. 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems, Redondo Beach, USA, 2018: 1–10. doi: 10.1109/BTAS.2018.8698601.
|
| [19] |
ZHONG Zhizhou, MI Yuxi, HUANG Yuge, et al. SlerpFace: Face template protection via spherical linear interpolation[C]. Proceedings of the 39th AAAI Conference on Artificial Intelligence, Philadelphia, USA, 2025: 10698–10706. doi: 10.1609/aaai.v39i10.33162.
|
| [20] |
WANG Zhibo, WANG He, JIN Shuaifan, et al. Privacy-preserving adversarial facial features[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 8212–8221. doi: 10.1109/CVPR52729.2023.00794.
|
| [21] |
SHAHREZA H O, HAHN V K, and MARCEL S. MLP-hash: Protecting face templates via hashing of randomized multi-layer perceptron[C]. 2023 31st European Signal Processing Conference, Helsinki, Finland, 2023: 605–609. doi: 10.23919/EUSIPCO58844.2023.10289780.
|
| [22] |
CHAMIKARA M A P, BERTOK P, KHALIL I, et al. Privacy preserving face recognition utilizing differential privacy[J]. Computers & Security, 2020, 97: 101951. doi: 10.1016/j.cose.2020.101951.
|
| [23] |
TANG Long, YE Dengpan, LV Yunna, et al. Once and for all: Universal transferable adversarial perturbation against deep hashing-based facial image retrieval[C]. Proceedings of the 38th AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2024: 5136–5144. doi: 10.1609/aaai.v38i6.28319.
|
| [24] |
HU Shengshan, LIU Xiaogeng, ZHANG Yechao, et al. Protecting facial privacy: Generating adversarial identity masks via style-robust makeup transfer[C]. Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 14994–15003. doi: 10.1109/CVPR52688.2022.01459.
|
| [25] |
YANG Xiao, LIU Chang, XU Longlong, et al. Towards effective adversarial textured 3D meshes on physical face recognition[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 4119–4128. doi: 10.1109/CVPR52729.2023.00401.
|
| [26] |
ERKIN Z, FRANZ M, GUAJARDO J, et al. Privacy-preserving face recognition[C]. The 9th International Symposium on Privacy Enhancing Technologies, Seattle, USA, 2009: 235–253. doi: 10.1007/978-3-642-03168-7_14.
|
| [27] |
PAILLIER P. Public-key cryptosystems based on composite degree residuosity classes[M]. STERN J. Advances in Cryptology–EUROCRYPT ’99. Berlin: Springer, 1999: 223–238. doi: 10.1007/3-540-48910-X_16.
|
| [28] |
DAMGÅRD I, GEISLER M, and KRØIGAARD M. Efficient and secure comparison for on-line auctions[C]. 12th Australasian Conference on Information Security and Privacy, Townsville, Australia, 2007: 416–430. doi: 10.1007/978-3-540-73458-1_30.
|
| [29] |
MA Zhuo, LIU Yang, LIU Ximeng, et al. Lightweight privacy-preserving ensemble classification for face recognition[J]. IEEE Internet of Things Journal, 2019, 6(3): 5778–5790. doi: 10.1109/JIOT.2019.2905555.
|
| [30] |
ZHANG Pengbo and YANG Zhixin. A novel AdaBoost framework with robust threshold and structural optimization[J]. IEEE Transactions on Cybernetics, 2018, 48(1): 64–76. doi: 10.1109/TCYB.2016.2623900.
|
| [31] |
OSADCHY M, PINKAS B, JARROUS A, et al. SCiFI - A system for secure face identification[C]. 2010 IEEE Symposium on Security and Privacy, Oakland, USA, 2010: 239–254. doi: 10.1109/SP.2010.39.
|
| [32] |
TRONCOSO-PASTORIZA J R, GONZALEZ-JIMENEZ D, and PEREZ-GONZALEZ F. Fully private noninteractive face verification[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(7): 1101–1114. doi: 10.1109/TIFS.2013.2262273.
|
| [33] |
JIN Xin, LIU Yan, LI Xiaodong, et al. Privacy preserving face identification in the cloud through sparse representation[C]. Proceedings of the 10th Chinese Conference on Biometric Recognition, Tianjin, China, 2015: 160–167. doi: 10.1007/978-3-319-25417-3_20.
|
| [34] |
IBARRONDO A, CHABANNE H, DESPIEGEL V, et al. Grote: Group testing for privacy-preserving face identification[C]. Proceedings of the Thirteenth ACM Conference on Data and Application Security and Privacy, Charlotte, USA, 2023: 117–128. doi: 10.1145/3577923.3583656.
|
| [35] |
CHEON J H, KIM A, KIM M, et al. Homomorphic encryption for arithmetic of approximate numbers[C]. 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, 2017: 409–437. doi: 10.1007/978-3-319-70694-8_15.
|
| [36] |
GUO Shangwei, XIANG Tao, and LI Xiaoguo. Towards efficient privacy-preserving face recognition in the cloud[J]. Signal Processing, 2019, 164: 320–328. doi: 10.1016/j.sigpro.2019.06.024.
|
| [37] |
KOU Xiaoyu, ZHANG Ziling, ZHANG Yuelei, et al. Efficient and privacy-preserving distributed face recognition scheme via FaceNet[C]. Proceedings of the ACM Turing Award Celebration Conference, Hefei, China, 2021: 110–115. doi: 10.1145/3472634.3472661.
|
| [38] |
GAO Wenjing, YU Jia, HAO Rong, et al. Privacy-preserving face recognition with multi-edge assistance for intelligent security systems[J]. IEEE Internet of Things Journal, 2023, 10(12): 10948–10958. doi: 10.1109/JIOT.2023.3240166.
|
| [39] |
JI Jiazhen, WANG Huan, HUANG Yuge, et al. Privacy-preserving face recognition with learnable privacy budgets in frequency domain[C]. 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 475–491. doi: 10.1007/978-3-031-19775-8_28.
|
| [40] |
MI Yuxi, HUANG Yuge, JI Jiazhen, et al. Privacy-preserving face recognition using random frequency components[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 19616–19627. doi: 10.1109/ICCV51070.2023.01802.
|
| [41] |
HENRY C, ASIF M S, and LI Zhu. Privacy preserving face recognition with lensless camera[C]. 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Rhodes Island, Greece, 2023: 1–5. doi: 10.1109/ICASSP49357.2023.10096627.
|
| [42] |
ASIF M S, AYREMLOU A, SANKARANARAYANAN A, et al. Flatcam: Thin, lensless cameras using coded aperture and computation[J]. IEEE Transactions on Computational Imaging, 2017, 3(3): 384–397. doi: 10.1109/TCI.2016.2593662.
|
| [43] |
MI Yuxi, ZHONG Zhizhou, HUANG Yuge, et al. Privacy-preserving face recognition using trainable feature subtraction[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 297–307. doi: 10.1109/CVPR52733.2024.00036.
|
| [44] |
PANDEY R K, ZHOU Yingbo, KOTA B U, et al. Deep secure encoding for face template protection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, USA, 2016: 77–83. doi: 10.1109/CVPRW.2016.17.
|
| [45] |
TALREJA V, VALENTI M C, and NASRABADI N M. Zero-shot deep hashing and neural network based error correction for face template protection[C]. 2019 IEEE 10th International Conference on Biometrics Theory, Applications and Systems, Tampa, USA, 2019: 1–10. doi: 10.1109/BTAS46853.2019.9185979.
|
| [46] |
赵铖辉, 李勇, 张振江. BinaryFace: 基于深层卷积神经网络的人脸模板保护模型[J]. 信息安全学报, 2020, 5(5): 43–55. doi: 10.19363/J.cnki.cn10-1380/tn.2020.09.04.
ZHAO Chenghui, LI Yong, and ZHANG Zhenjiang. BinaryFace: The model of face template protection based on CNN[J]. Journal of Cyber Security, 2020, 5(5): 43–55. doi: 10.19363/J.cnki.cn10-1380/tn.2020.09.04.
|
| [47] |
ZHOU Junwei, SHANG Delong, LANG Huile, et al. Face template protection through residual learning based error-correcting codes[C]. Proceedings of the 4th International Conference on Control and Computer Vision, Macau, China, 2021: 112–118. doi: 10.1145/3484274.3484292.
|
| [48] |
MAI Guangcan, CAO Kai, LAN Xiangyuan, et al. SecureFace: Face template protection[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 262–277. doi: 10.1109/TIFS.2020.3009590.
|
| [49] |
GAO Ce, ZHANG Kang, WANG Weiwei, et al. Protected face templates generation based on multiple partial Walsh transformations and Simhash[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 4100–4113. doi: 10.1109/TIFS.2024.3369322.
|
| [50] |
SWICK D. Walsh function generation (Corresp. )[J]. IEEE Transactions on Information Theory, 1969, 15(1): 167–167. doi: 10.1109/TIT.1969.1054251.
|
| [51] |
CHARIKAR M S. Similarity estimation techniques from rounding algorithms[C]. Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, Montreal, Canada, 2002: 380–388. doi: 10.1145/509907.509965.
|
| [52] |
李亚红, 李一婧, 杨小东, 等. 基于同态加密和群签名的可验证联邦学习方案[J]. 电子与信息学报, 2025, 47(3): 758–768. doi: 10.11999/JEIT240796.
LI Yahong, LI Yijing, YANG Xiaodong, et al. A verifiable federated learning scheme based on homomorphic encryption and group signature[J]. Journal of Electronics & Information Technology, 2025, 47(3): 758–768. doi: 10.11999/JEIT240796.
|
| [53] |
郭显, 王典冬, 冯涛, 等. 基于同态加密的可验证隐私保护联邦学习方案[J]. 电子与信息学报, 2025, 47(4): 1113–1125. doi: 10.11999/JEIT240390.
GUO Xian, WANG Diandong, FENG Tao, et al. A verifiable privacy protection federated learning scheme based on homomorphic encryption[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1113–1125. doi: 10.11999/JEIT240390.
|
| [54] |
AGGARWAL D, ZHOU Jiayu, and JAIN A K. FedFace: Collaborative learning of face recognition model[C]. 2021 IEEE International Joint Conference on Biometrics, Shenzhen, China, 2021: 1–8. doi: 10.1109/IJCB52358.2021.9484386.
|
| [55] |
MARTÍNEZ BELTRÁN E T, PERALES GÓMEZ Á L, FENG Chao, et al. Fedstellar: A platform for decentralized federated learning[J]. Expert Systems with Applications, 2024, 242: 122861. doi: 10.1016/j.eswa.2023.122861.
|
| [56] |
GAO Liang, LI Li, CHEN Yingwen, et al. FIFL: A fair incentive mechanism for federated learning[C]. Proceedings of the 50th International Conference on Parallel Processing, Lemont, USA, 2021: 82. doi: 10.1145/3472456.3472469.
|
| [57] |
ZHENG Haipeng, LI Bing, LIU Guozhu, et al. Blockchain-based federated learning framework applied in face recognition[C]. 2022 7th International Conference on Signal and Image Processing, Suzhou, China, 2022: 265–269. doi: 10.1109/ICSIP55141.2022.9886171.
|
| [58] |
NIU Yifan and DENG Weihong. Federated learning for face recognition with gradient correction[C]. Proceedings of the 36th AAAI Conference on Artificial Intelligence, 2022: 1999–2007. doi: 10.1609/aaai.v36i2.20095. (查阅网上资料,未找到本条文献出版地信息,请确认).
|
| [59] |
LIU C T, WANG C Y, CHIEN S Y, et al. FedFR: Joint optimization federated framework for generic and personalized face recognition[C]. Proceedings of the 36th AAAI Conference on Artificial Intelligence, 2022: 1656–1664. doi: 10.1609/aaai.v36i2.20057.
|
| [60] |
WOUBIE A, SOLOMON E, and ATTIEH J. Maintaining privacy in face recognition using federated learning method[J]. IEEE Access, 2024, 12: 39603–39613. doi: 10.1109/ACCESS.2024.3373691.
|
| [61] |
KIM J, PARK T, KIM H, et al. Federated learning for face recognition[C]. 2021 IEEE International Conference on Consumer Electronics, Las Vegas, USA, 2021: 1–2. doi: 10.1109/ICCE50685.2021.9427748.
|
| [62] |
DENG Yu, YANG Jiaolong, CHEN Dong, et al. Disentangled and controllable face image generation via 3D imitative-contrastive learning[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 5153–5162. doi: 10.1109/CVPR42600.2020.00520.
|
| [63] |
LI Yuancheng, WANG Yimeng, and LI Daoxing. Privacy-preserving lightweight face recognition[J]. Neurocomputing, 2019, 363: 212–222. doi: 10.1016/j.neucom.2019.07.039.
|
| [64] |
SAATCHI Y and WILSON A G. Bayesian GAN[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017. 2017: 3625–3634.
|
| [65] |
KARRAS T, AITTALA M, HELLSTEN J, et al. Training generative adversarial networks with limited data[C]. Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 1015.
|
| [66] |
BAE G, DE LA GORCE M, BALTRUŠAITIS T, et al. DigiFace-1M: 1 million digital face images for face recognition[C]. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2023: 3515–3524. doi: 10.1109/WACV56688.2023.00352.
|
| [67] |
BLANZ V and VETTER T. A morphable model for the synthesis of 3D faces[C]. Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, USA, 1999: 187–194. doi: 10.1145/311535.311556.
|
| [68] |
WOOD E, BALTRUŠAITIS T, HEWITT C, et al. Fake it till you make it: Face analysis in the wild using synthetic data alone[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 3661–3671. doi: 10.1109/ICCV48922.2021.00366.
|
| [69] |
KOLF J N, RIEBER T, ELLIESEN J, et al. Identity-driven three-player generative adversarial network for synthetic-based face recognition[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Vancouver, Canada, 2023: 806–816. doi: 10.1109/CVPRW59228.2023.00088.
|
| [70] |
BOUTROS F, GREBE J H, KUIJPER A, et al. IDiff-Face: Synthetic-based face recognition through fizzy identity-conditioned diffusion model[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 19593–19604. doi: 10.1109/ICCV51070.2023.01800.
|
| [71] |
MELZI P, RATHGEB C, TOLOSANA R, et al. GANDiffFace: Controllable generation of synthetic datasets for face recognition with realistic variations[C]. Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision Workshops, Paris, France, 2023: 3078–3087. doi: 10.1109/ICCVW60793.2023.00333.
|
| [72] |
XU Jianqing, LI Shen, WU Jiaying, et al. ID3: Identity-preserving-yet-diversified diffusion models for synthetic face recognition[C]. Proceedings of the 38th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2024: 77777–77798.
|
| [73] |
SHAHREZA H O and MARCEL S. HyperFace: Generating synthetic face recognition datasets by exploring face embedding hypersphere[C]. The Thirteenth International Conference on Learning Representations, Singapore, Singapore, 2025: 478–491. (查阅网上资料, 未找到本条文献页码信息, 请确认).
|
| [74] |
MI Yuxi, ZHONG Zhizhou, HUANG Yuge, et al. Data synthesis with diverse styles for face recognition via 3DMM-guided diffusion[C]. Proceedings of the 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2025: 21203–21214. doi: 10.1109/CVPR52734.2025.01975.
|
| [75] |
彭春蕾, 苗紫民, 刘德成, 等. 视觉身份隐私保护: 人脸匿名化研究方法[J]. 计算机学报, 2023, 46(11): 2431–2452. doi: 10.11897/SP.J.1016.2023.02431.
PENG Chunlei, MIAO Zimin, LIU Decheng, et al. Visual identity privacy protection: Research methods of face anonymization[J]. Chinese Journal of Computers, 2023, 46(11): 2431–2452. doi: 10.11897/SP.J.1016.2023.02431.
|
| [76] |
LI Jingzhi, HAN Lutong, ZHANG Hua, et al. Learning disentangled representations for identity preserving surveillance face camouflage[C]. 2020 25th International Conference on Pattern Recognition, Milan, Italy, 2021: 9748–9755. doi: 10.1109/ICPR48806.2021.9412636.
|
| [77] |
LI Jingzhi, HAN Lutong, CHEN Ruoyu, et al. Identity-preserving face anonymization via adaptively facial attributes obfuscation[C]. Proceedings of the 29th ACM International Conference on Multimedia, Chengdu, China, 2021: 3891–3899. doi: 10.1145/3474085.3475367. (查阅网上资料,未找到本条文献出版地信息,请确认).
|
| [78] |
LI Jingzhi, ZHANG Hua, LIANG Siyuan, et al. Privacy-enhancing face obfuscation guided by semantic-aware attribution maps[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 3632–3646. doi: 10.1109/TIFS.2023.3282384.
|
| [79] |
YUAN Lin, LIU Linguo, PU Xiao, et al. PRO-face: A generic framework for privacy-preserving recognizable obfuscation of face images[C]. Proceedings of the 30th ACM International Conference on Multimedia, Lisboa, Portugal, 2022: 1661–1669. doi: 10.1145/3503161.3548202.
|
| [80] |
YUAN Lin, CHEN Wu, PU Xiao, et al. PRO-face C: Privacy-preserving recognition of obfuscated face via feature compensation[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 4930–4944. doi: 10.1109/TIFS.2024.3388976.
|
| [81] |
SU Zhigang, ZHOU Dawei, WANG Nannan, et al. Hiding visual information via obfuscating adversarial perturbations[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 4333–4343. doi: 10.1109/ICCV51070.2023.00402.
|
| [82] |
WANG Tao, ZHANG Yushu, YANG Zixuan, et al. Seeing is not believing: An identity hider for human vision privacy protection[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2025, 7(2): 170–181. doi: 10.1109/TBIOM.2024.3449849.
|
| [83] |
任坤, 李峥瑱, 桂源泽, 等. 低分辨率随机遮挡人脸图像的超分辨率修复[J]. 电子与信息学报, 2024, 46(8): 3343–3352. doi: 10.11999/JEIT231262.
REN Kun, LI Zhengzhen, GUI Yuanze, et al. Super-resolution inpainting of low-resolution randomly occluded face images[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3343–3352. doi: 10.11999/JEIT231262.
|
| [84] |
YUAN Zhuowen, YOU Zhengxin, LI Sheng, et al. On generating identifiable virtual faces[C]. Proceedings of the 30th ACM International Conference on Multimedia, Lisboa, Portugal, 2022: 1465–1473. doi: 10.1145/3503161.3548110.
|
| [85] |
KARRAS T, LAINE S, and AILA T. A style-based generator architecture for generative adversarial networks[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 4396–4405. doi: 10.1109/CVPR.2019.00453.
|
| [86] |
WANG Tao, ZHANG Yushu, ZHAO Ruoyu, et al. Identifiable face privacy protection via virtual identity transformation[J]. IEEE Signal Processing Letters, 2023, 30: 773–777. doi: 10.1109/LSP.2023.3289392.
|
| [87] |
WANG Tao, ZHANG Yushu, XIAO Xiangli, et al. Make privacy renewable! Generating privacy-preserving faces supporting cancelable biometric recognition[C]. Proceedings of the 32nd ACM International Conference on Multimedia, Melbourne, Australia, 2024: 10268–10276. doi: 10.1145/3664647.3680704.
|
| [88] |
WANG Miaomiao, HUA Guang, LI Sheng, et al. A key-driven framework for identity-preserving face anonymization[C]. 32nd Annual Network and Distributed System Security Symposium, San Diego, USA, 2025: 10168–10176. doi: 10.14722/ndss.2025.23729. (查阅网上资料,未找到本条文献页码和doi信息,请确认).
|
| [89] |
DWORK C and LEI Jing. Differential privacy and robust statistics[C]. Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, Bethesda, USA, 2009: 371–380. doi: 10.1145/1536414.1536466.
|
| [90] |
MAHAWAGA ARACHCHIGE P C, BERTOK P, KHALIL I, et al. Local differential privacy for deep learning[J]. IEEE Internet of Things Journal, 2020, 7(7): 5827–5842. doi: 10.1109/JIOT.2019.2952146.
|
| [91] |
MAO Yunlong, YI Shanhe, LI Qun, et al. A privacy-preserving deep learning approach for face recognition with edge computing[C]. Proceedings of the USENIX Workshop on Hot Topics in Edge Computing, Boston, USA, 2018: 1–6. doi: 10.5555/3342665.3342676. (查阅网上资料,未找到本条文献页码和doi信息,请确认).
|
| [92] |
MENG Qiang, ZHOU Feng, REN Hainan, et al. Improving federated learning face recognition via privacy-agnostic clusters[C]. The Tenth International Conference on Learning Representations, 2022: 237–245. (查阅网上资料, 未找到本条文献页码和出版地信息, 请确认).
|
| [93] |
WEN Yunqian, LIU Bo, DING Ming, et al. IdentityDP: Differential private identification protection for face images[J]. Neurocomputing, 2022, 501: 197–211. doi: 10.1016/j.neucom.2022.06.039.
|
| [94] |
张啸剑, 付聪聪, 孟小峰. 结合矩阵分解与差分隐私的人脸图像发布[J]. 中国图象图形学报, 2020, 25(4): 655–668. doi: 10.11834/jig.190308.
ZHANG Xiaojian, FU Congcong, and MENG Xiaofeng. Private facial image publication through matrix decomposition[J]. Journal of Image and Graphics, 2020, 25(4): 655–668. doi: 10.11834/jig.190308.
|
| [95] |
XIAO Taihong, TSAI Y H, SOHN K, et al. Adversarial learning of privacy-preserving and task-oriented representations[C]. Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 12434–12441. doi: 10.1609/aaai.v34i07.6930.
|
| [96] |
LI Ang, GUO Jiayi, YANG Huanrui, et al. DeepObfuscator: Obfuscating intermediate representations with privacy-preserving adversarial learning on smartphones[C]. Proceedings of the International Conference on Internet-of-Things Design and Implementation, Charlottesvle, USA, 2021: 28–39. doi: 10.1145/3450268.3453519.
|
| [97] |
JIN Shuaifan, WANG He, WANG Zhibo, et al. FaceObfuscator: Defending deep learning-based privacy attacks with gradient descent-resistant features in face recognition[C]. Proceedings of the 33rd USENIX Conference on Security Symposium, Philadelphia, USA, 2024: 383.
|
| [98] |
WEI Chenda, WANG Haoyue, QIAN Zhenxing, et al. Learning discrepant transformations for face privacy protection[C]. Proceedings of the 33rd ACM International Conference on Multimedia, Dublin, Ireland, 2025: 7672–7680. doi: 10.1145/3746027.3754881.
|
| [99] |
SHAN S, WENGER Emily, ZHANG Jiayun, et al. Fawkes: Protecting privacy against unauthorized deep learning models[C]. Proceedings of the 29th USENIX Conference on Security Symposium, Santa Clara, USA, 2020: 90. (查阅网上资料, 未找到本条文献出版地信息, 请确认).
|
| [100] |
YANG Xiao, DONG Yinpeng, PANG Tianyu, et al. Towards face encryption by generating adversarial identity masks[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 3877–3887. doi: 10.1109/ICCV48922.2021.00387.
|
| [101] |
ZHONG Yaoyao and DENG Weihong. OPOM: Customized invisible cloak towards face privacy protection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3590–3603. doi: 10.1109/TPAMI.2022.3175602.
|
| [102] |
LIU Xuannan, ZHONG Yaoyao, CUI Xing, et al. AdvCloak: Customized adversarial cloak for privacy protection[J]. Pattern Recognition, 2025, 158: 111050. doi: 10.1016/j.patcog.2024.111050.
|
| [103] |
DONG Xin, WANG Rui, LIANG Siyuan, et al. Face encryption via frequency-restricted identity-agnostic attacks[C]. Proceedings of the 31st ACM International Conference on Multimedia, Ottawa, Canada, 2023: 579–588. doi: 10.1145/3581783.3612233.
|
| [104] |
YIN Bangjie, WANG Wenxuan, YAO Taiping, et al. Adv-makeup: A new imperceptible and transferable attack on face recognition[C]. Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, Montreal, Canada, 2021: 1252–1258. doi: 10.24963/ijcai.2021/173.
|
| [105] |
SHAMSHAD F, NASEER M, and NANDAKUMAR K. CLIP2Protect: Protecting facial privacy using text-guided makeup via adversarial latent search[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 20595–20605. doi: 10.1109/CVPR52729.2023.01973.
|
| [106] |
SUN Yuhao, YU Lingyun, XIE Hongtao, et al. DiffAM: Diffusion-based adversarial makeup transfer for facial privacy protection[C]. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 24584–24594. doi: 10.1109/CVPR52733.2024.02321.
|
| [107] |
SALAR A, LIU Qing, TIAN Yingli, et al. Enhancing facial privacy protection via weakening diffusion purification[C]. Proceedings of the 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2025: 8235–8244. doi: 10.1109/CVPR52734.2025.00771.
|
| [108] |
孙军梅, 潘振雄, 李秀梅, 等. 面向人脸验证的可迁移对抗样本生成方法[J]. 电子与信息学报, 2023, 45(5): 1842–1851. doi: 10.11999/JEIT220358.
SUN Junmei, PAN Zhenxiong, LI Xiumei, et al. Transferable adversarial example generation method for face verification[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1842–1851. doi: 10.11999/JEIT220358.
|
| [109] |
ZHANG Yushu, WANG Tao, ZHAO Ruoyu, et al. RAPP: Reversible privacy preservation for various face attributes[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 3074–3087. doi: 10.1109/TIFS.2023.3274359.
|
| [110] |
MIRJALILI V, RASCHKA S, and ROSS A. PrivacyNet: Semi-adversarial networks for multi-attribute face privacy[J]. IEEE Transactions on Image Processing, 2020, 29: 9400–9412. doi: 10.1109/TIP.2020.3024026.
|
| [111] |
MORALES A, FIERREZ J, VERA-RODRIGUEZ R, et al. SensitiveNets: Learning agnostic representations with application to face images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(6): 2158–2164. doi: 10.1109/TPAMI.2020.3015420.
|
| [112] |
WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861.
|
| [113] |
HUANG G B, MATTAR M, BERG T, et al. Labeled faces in the wild: A database for studying face recognition in unconstrained environments[C]. Proceedings of the Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition, Marseille, France, 2008.
|
| [114] |
LIU Ziwei, LUO Ping, WANG Xiaogang, et al. Deep learning face attributes in the wild[C]. Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3730–3738. doi: 10.1109/ICCV.2015.425.
|
| [115] |
CAO Qiong, SHEN Li, XIE Weidi, et al. VGGFace2: A dataset for recognising faces across pose and age[C]. Proceedings of the 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition, Xi'an, China, 2018: 67–74. doi: 10.1109/FG.2018.00020.
|
| [116] |
YI Dong, LEI Zhen, LIAO Shengcai, et al. Learning face representation from scratch[EB/OL]. https://arxiv.org/abs/1411.7923, 2014.
|
| [117] |
SENGUPTA S, CHEN Juncheng, CASTILLO C, et al. Frontal to profile face verification in the wild[C]. 2016 IEEE Winter Conference on Applications of Computer Vision, Lake Placid, USA, 2016: 1–9. doi: 10.1109/WACV.2016.7477558.
|
| [118] |
MOSCHOGLOU S, PAPAIOANNOU A, SAGONAS C, et al. AgeDB: The first manually collected, in-the-wild age database[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 1997–2005. doi: 10.1109/CVPRW.2017.250.
|
| [119] |
ZHENG Tianyue and DENG Weihong. Cross-pose LFW: A database for studying cross-pose face recognition in unconstrained environments[J]. Beijing University of Posts and Telecommunications, Tech. Rep, 2018, 5(7): 1-6. (查阅网上资料, 未找到本条文献卷期, 刊名和页码信息, 请确认).
|
| [120] |
ZHENG Tianyue, DENG Weihong, and HU Jiani. Cross-age LFW: A database for studying cross-age face recognition in unconstrained environments[EB/OL]. https://arxiv.org/abs/1708.08197, 2017.
|
| [121] |
THOMAZ C E and GIRALDI G A. A new ranking method for principal components analysis and its application to face image analysis[J]. Image and Vision Computing, 2010, 28(6): 902–913. doi: 10.1016/j.imavis.2009.11.005.
|
| [122] |
WHITELAM C, TABORSKY E, BLANTON A, et al. IARPA JANUS benchmark-B face dataset[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 592–600. doi: 10.1109/CVPRW.2017.87.
|
| [123] |
MAZE B, ADAMS J, DUNCAN J A, et al. IARPA Janus Benchmark-C: Face dataset and protocol[C]. 2018 International Conference on Biometrics (ICB), Gold Coast, Australia, 2018: 158–165. doi: 10.1109/ICB2018.2018.00033.
|
| [124] |
LEE K C, HO J, and KRIEGMAN D J. Acquiring linear subspaces for face recognition under variable lighting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 684–698. doi: 10.1109/TPAMI.2005.92.
|
| [125] |
SAKTHIVEL S, LAKSHMIPATHI R, and ARUMUGAM M A M. Evaluation of feature extraction and dimensionality reduction algorithms for face recognition using ORL database[C]. Proceedings of the 2009 International Conference on Image Processing, Computer Vision, & Pattern Recognition, Las Vegas, USA, 2009: 367–373. doi: 10.1109/IPCV.2009.50. (查阅网上资料,未找到本条文献页码和doi信息,请确认).
|
| [126] |
MCCOOL C, WALLACE R, MCLAREN M, et al. Session variability modelling for face authentication[J]. IET Biometrics, 2013, 2(3): 117–129. doi: 10.1049/iet-bmt.2012.0059.
|
| [127] |
ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 586–595. doi: 10.1109/CVPR.2018.00068.
|
| [128] |
GOMEZ-BARRERO M, GALBALLY J, RATHGEB C, et al. General framework to evaluate unlinkability in biometric template protection systems[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(6): 1406–1420. doi: 10.1109/TIFS.2017.2788000.
|
| [129] |
HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local nash equilibrium[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6629–6640.
|
| [130] |
ISO. ISO/IEC 24745: 2022 Information security, cybersecurity and privacy protection — biometric information protection[S]. Geneva: ISO, 2022. (查阅网上资料, 未找到本条文献出版地信息, 请确认).
|