| Citation: | CHANG Huaizhao, GU Yingyan, HAN Yunzhi, JIN Benzhou. Convolutional Mixed Multi-Attention Encoder-Decoder Network for Radar Signal Sorting[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251031 |
| [1] |
WANG Shiqiang, HU Guoping, ZHANG Qiliang, et al. The background and significance of radar signal sorting research in modern warfare[J]. Procedia Computer Science, 2019, 154: 519–523. doi: 10.1016/j.procs.2019.06.080.
|
| [2] |
HAIGH K and ANDRUSENKO J. Cognitive Electronic Warfare: An Artificial Intelligence Approach[M]. Norwood: Artech House, 2021: 239.
|
| [3] |
LANG Ping, FU Xiongjun, DONG Jian, et al. A novel radar signals sorting method via residual graph convolutional network[J]. IEEE Signal Processing Letters, 2023, 30: 753–757. doi: 10.1109/LSP.2023.3287404.
|
| [4] |
WAN Liangtian, LIU Rong, SUN Lu, et al. UAV Swarm based radar signal sorting via multi-source data fusion: A deep transfer learning framework[J]. Information Fusion, 2022, 78: 90–101. doi: 10.1016/j.inffus.2021.09.007.
|
| [5] |
ZHOU Zixiang, FU Xiongjun, DONG Jian, et al. Radar signal sorting with multiple self-attention coupling mechanism based transformer network[J]. IEEE Signal Processing Letters, 2024, 31: 1765–1769. doi: 10.1109/LSP.2024.3421948.
|
| [6] |
CAO Sheng, WANG Shucheng, and ZHANG Yan. Density-based fuzzy C-means multi-center re-clustering radar signal sorting algorithm[C].17th IEEE International Conference on Machine Learning and Applications, Orlando, USA, 2018: 891–896. doi: 10.1109/ICMLA.2018.00144.
|
| [7] |
SU Yuhang, CHEN Zhao, GONG Linfu, et al. An improved adaptive radar signal sorting algorithm based on DBSCAN by a novel CVI[J]. IEEE Access, 2024, 12: 43139–43154. doi: 10.1109/ACCESS.2024.3361221.
|
| [8] |
AHMED M G S and TANG B. New FCM's validity index for sorting radar signal[C]. IEEE 17th International Conference on Computational Science and Engineering, Chengdu, China, 2014: 127–131. doi: 10.1109/CSE.2014.55.
|
| [9] |
ZHU Mengtao, LI Yunjie, and WANG Shafei. Model-based time series clustering and interpulse modulation parameter estimation of multifunction radar pulse sequences[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 3673–3690. doi: 10.1109/TAES.2021.3082660.
|
| [10] |
WEI Xiuxi, PENG Maosong, HUANG Huajuan, et al. An overview on density peaks clustering[J]. Neurocomputing, 2023, 554: 126633. doi: 10.1016/j.neucom.2023.126633.
|
| [11] |
LIU Zhangmeng and YU P S. Classification, denoising, and deinterleaving of pulse streams with recurrent neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(4): 1624–1639. doi: 10.1109/TAES.2018.2874139.
|
| [12] |
NOTARO P, PASCHALI M, HOPKE C, et al. Radar emitter classification with attribute-specific recurrent neural networks[J/OL]. arXiv preprint arXiv: 1911.07683, 2019. doi: 10.48550/arXiv.1911.07683.
|
| [13] |
ZHANG Jiaxiang, WANG Bo, HAN Xinrui, et al. A multi-radar emitter sorting and recognition method based on hierarchical clustering and TFCN[J]. Digital Signal Processing, 2025, 160: 105005. doi: 10.1016/j.dsp.2025.105005.
|
| [14] |
WANG Haojian, TAO Zhenji, HE Jin, et al. Deinterleaving of intercepted radar pulse streams via temporal convolutional attention network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(4): 9327–9343. doi: 10.1109/TAES.2025.3555244.
|
| [15] |
AL-MALAHI A, FARHAN A, FENG Hancong, et al. An intelligent radar signal classification and deinterleaving method with unified residual recurrent neural network[J]. IET Radar, Sonar & Navigation, 2023, 17(8): 1259–1276. doi: 10.1049/rsn2.12417.
|
| [16] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
| [17] |
WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 11531–11539. doi: 10.1109/CVPR42600.2020.01155.
|
| [18] |
HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141. doi: 10.1109/CVPR.2018.00745.
|
| [19] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2999–3007. doi: 10.1109/ICCV.2017.324.
|
| [20] |
ELSAYED N, MAIDA A S, and BAYOUMI M. Deep gated recurrent and convolutional network hybrid model for univariate time series classification[J/OL]. arXiv preprint arXiv: 1812.07683, 2018. doi: 10.48550/arXiv.1812.07683.
|
| [21] |
CHEN Hongyu, FENG Kangan, KONG Yukai, et al. Multi-function radar work mode recognition based on encoder-decoder model[C]. IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 1189–1192. doi: 10.1109/IGARSS46834.2022.9884556.
|