Advanced Search
Turn off MathJax
Article Contents
WU Sujie, WU Binbin, YANG Ning, WANG Heng, GUO Daoxing, GU Chuan. Research on UAV Swarm Radiation Source Localization Method Based on Dynamic Formation Optimization[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251023
Citation: WU Sujie, WU Binbin, YANG Ning, WANG Heng, GUO Daoxing, GU Chuan. Research on UAV Swarm Radiation Source Localization Method Based on Dynamic Formation Optimization[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251023

Research on UAV Swarm Radiation Source Localization Method Based on Dynamic Formation Optimization

doi: 10.11999/JEIT251023 cstr: 32379.14.JEIT251023
  • Received Date: 2025-09-28
  • Accepted Date: 2025-12-08
  • Rev Recd Date: 2025-12-08
  • Available Online: 2025-12-16
  • In dense and structurally complex urban environments, Unmanned Aerial Vehicle (UAV) swarm radiation source localization is affected by signal attenuation, multipath propagation, and building obstructions. To address these limitations, a dynamic formation-optimization method for UAV swarms is proposed. By improving the geometric configuration of the swarm, the method reduces path loss and interference, which strengthens localization accuracy. Received signal strength is used to evaluate signal quality in real time and supports adaptive formation adjustments that improve propagation conditions. Geometric dilution of precision and root mean square error metrics are integrated to refine swarm geometry and improve distance-estimation reliability. Simulation results show that the proposed method converges faster and improves localization accuracy in complex urban environments, reducing errors by more than 80 percent. The method adapts to environmental variation and demonstrates strong robustness and practical value.  Objective  UAV swarm localization and formation control in urban environments are affected by obstacles, signal attenuation, and rapid variation in the surroundings that reduce the reliability of conventional methods. This study proposes a radiation source localization approach that integrates the Received Signal Strength Indicator (RSSI) with dynamic formation adjustment to improve localization accuracy and strengthen system robustness in complex urban scenarios. RSSI is used once in full form, then referenced consistently.  Methods  The method uses RSSI measurements to estimate the distance to the radiation source and adjusts UAV swarm formation in real time to reduce localization errors. These adjustments are based on feedback that reflects relative positions, signal strength, and environmental variation. Localization accuracy is strengthened through a multi-sensor fusion strategy that integrates GPS, IMU, and depth-camera data. A data-quality assessment mechanism evaluates signal reliability and triggers formation adaptation when the signal drops below a predefined threshold. This optimization process reduces positioning errors and improves system robustness.  Results and Discussions  Simulation experiments in a ROS-based environment were conducted to evaluate the UAV swarm localization method under urban obstacles and multipath conditions. The swarm began in a hexagonal formation and adjusted its geometry according to environmental variation and localization confidence (Fig. 34). As shown in Fig. 5, localization errors fluctuated during initialization but converged to below 1 m after 150 s. Formation comparisons (Fig. 6) showed that symmetric structures such as hexagonal and triangular formations maintained errors below 0.5 m, whereas asymmetric formations (T and Y shape) produced deviations up to 4.9 m. Further comparisons (Fig. 7) showed that traditional RSSI saturated near 15 m, direction of arrival fluctuated between 5 and 14 m, and time difference of arrival failed due to synchronization problems. The proposed method achieved sub-meter accuracy within 60 s and remained robust throughout the mission. These findings indicate that combining RSSI-based distance estimation with dynamic formation adjustment improves localization accuracy, convergence speed, and adaptability under complex environmental conditions.  Conclusions  This study addresses UAV swarm localization in complex urban environments by integrating RSSI-based distance estimation, dynamic formation adjustment, and multi-sensor fusion. ROS-based simulations show that: (1) localization errors converge rapidly to sub-meter levels, reaching below 1 m within 150 s under non-line-of-sight conditions; (2) symmetric formations such as hexagonal and triangular configurations outperform asymmetric ones and reduce errors by up to 67 percent compared with fixed Y-shaped formations; and (3) relative to traditional RSSI, direction of arrival, and time difference of arrival approaches, the proposed method shows faster convergence, higher stability, and stronger robustness.
  • loading
  • [1]
    AMARCHA F A, CHEHRI A, JAKIMI A, et al. Drones optimization for public transportation safety: Enhancing surveillance and efficiency in smart cities[C]. The 2024 IEEE World Forum on Public Safety Technology (WFPST), Herndon, USA, 2024: 153–158. doi: 10.1109/WFPST58552.2024.00023.
    [2]
    LIU Tao and ZHANG Bohan. A UAV-based remote sensing image automatic monitoring system empowered by artificial intelligence[C]. The 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS), Hassan, India, 2024: 1–5. doi: 10.1109/IACIS61494.2024.10721807.
    [3]
    LIU Haishi, TSANG Y P, LEE C K M, et al. Internet of UAVs to automate search and rescue missions in post-disaster for smart cities[C]. The 2024 IEEE Intelligent Vehicles Symposium (IV), Jeju Island, Republic of Korea, 2024: 614–619. doi: 10.1109/IV55156.2024.10588641.
    [4]
    ZHANG Junqi, LU Yehao, WU Yunzhe, et al. PSO-based sparse source location in large-scale environments with a UAV swarm[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(5): 5249–5258. doi: 10.1109/TITS.2023.3237570.
    [5]
    REN Mingyuan, FU Xiuwen, PACE P, et al. Collaborative data acquisition for UAV-aided IoT based on time-balancing scheduling[J]. IEEE Internet of Things Journal, 2024, 11(8): 13660–13676. doi: 10.1109/JIOT.2023.3339136.
    [6]
    YE Xinzhe, XUE Wei, CHEN Xiaolong, et al. Cauchy kernel-based AEKF for UAV target tracking via digital ubiquitous radar under the sea–air background[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 3506605. doi: 10.1109/LGRS.2024.3402687.
    [7]
    SUH U S, HAN S K, and RA W S. Optimal formation of UAV swarm for TDOA-based passive target tracking[J]. Journal of Electrical Engineering & Technology, 2022, 17(1): 551–564. doi: 10.1007/s42835-021-00872-9.
    [8]
    KANG Zhen, DENG Yihang, YAN Hao, et al. A new method of UAV swarm formation flight based on AOA azimuth-only passive positioning[J]. Drones, 2024, 8(6): 243. doi: 10.3390/drones8060243.
    [9]
    WANG Yubing, WANG Weijia, ZHANG Xudong, et al. The joint phantom track deception and TDOA/FDOA localization using UAV swarm without prior knowledge of radars' precise locations[J]. Electronics, 2022, 11(10): 1577. doi: 10.3390/electronics11101577.
    [10]
    ZHANG Yuan, QI Juntong, WU Chong, et al. Indoor UAV formation system based on UWB positioning[C]. The 2023 42nd Chinese Control Conference (CCC), Tianjin, China, 2023: 8545–8550. doi: 10.23919/CCC58697.2023.10240727.
    [11]
    GÜZEY N. RF source localization using multiple UAVs through a novel geometrical RSSI approach[J]. Drones, 2022, 6(12): 417. doi: 10.3390/drones6120417.
    [12]
    CHEN Siyuan, ZENG Xiangding, LAEFER D F, et al. Flight path setting and data quality assessments for unmanned-aerial-vehicle-based photogrammetric bridge deck documentation[J]. Sensors, 2023, 23(16): 7159. doi: 10.3390/s23167159.
    [13]
    滕怀亮, 李本威, 高永, 等. 基于飞行数据的无人机平飞动作质量评价模型[J]. 北京航空航天大学学报, 2019, 45(10): 2108–2114. doi: 10.13700/J.BH.1001-5965.2019.0029.

    TENG Huailiang, LI Benwei, GAO Yong, et al. Quality evaluation model of unmanned aerial vehicle's horizontal flight maneuver based on flight data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 2108–2114. doi: 10.13700/J.BH.1001-5965.2019.0029.
    [14]
    屈耀红, 张峰, 谷任能, 等. 基于距离测量的多无人机协同目标定位方法[J]. 西北工业大学学报, 2019, 37(2): 266–272. doi: 10.3969/j.issn.1000-2758.2019.02.008.

    QU Yaohong, ZHANG Feng, GU Renneng, et al. Target cooperative location method of multi-UAV based on pseudo range measurement[J]. Journal of Northwestern Polytechnical University, 2019, 37(2): 266–272. doi: 10.3969/j.issn.1000-2758.2019.02.008.
    [15]
    QUAN Lun, YIN Longji, XU Chao, et al. Distributed swarm trajectory optimization for formation flight in dense environments[C]. The 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, USA, 2022: 4979–4985. doi: 10.1109/ICRA46639.2022.9812050.
    [16]
    ZHU Jiandong, DING Ting, and QIAO Lijuan. A closed-form solution for 3D source localization using angles and Doppler shifted frequencies[J]. IEEE Access, 2023, 11: 89581–89590. doi: 10.1109/ACCESS.2023.3305961.
    [17]
    MA Wen and ZHU Hongyan. Source localization using TDOA with sensor position errors based on constrained total least squares and ADMM[C]. The 2024 27th International Conference on Information Fusion (FUSION), Venice, Italy, 2024: 1–8. doi: 10.23919/FUSION59988.2024.10706425.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (154) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return