| Citation: | XIA Wei, WEI Hongtu, CHENG Ying, WANG Junting, HU Xiaoxuan. An Expert of Chain Construction and Optimization Method for Satellite Mission Planning[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251018 |
| [1] |
LI Peiyan, CUI Peixing, and WANG Huiquan. Mission sequence model and deep reinforcement learning-based replanning method for multi-satellite observation[J]. Sensors, 2025, 25(6): 1707. doi: 10.3390/s25061707.
|
| [2] |
ZHENG Qingbiao, CAI Yuanwen, and WANG Peng. A modified genetic algorithm for large-scale and joint satellite mission planning[J]. Egyptian Informatics Journal, 2025, 31: 100713. doi: 10.1016/j.eij.2025.100713.
|
| [3] |
YAO Wei, SHEN Xin, ZHANG Guo, et al. A spiking neural network based proximal policy optimization method for multi-point imaging mission scheduling of earth observation satellite[J]. Swarm and Evolutionary Computation, 2025, 94: 101867. doi: 10.1016/j.swevo.2025.101867.
|
| [4] |
LI Shuo, WANG Gang, and CHEN Jinyong. AEM-D3QN: A graph-based deep reinforcement learning framework for dynamic earth observation satellite mission planning[J]. Aerospace, 2025, 12(5): 420. doi: 10.3390/aerospace12050420.
|
| [5] |
LI Xinyi, WANG Sai, ZENG Siqi, et al. A survey on LLM-based multi-agent systems: Workflow, infrastructure, and challenges[J]. Vicinagearth, 2024, 1(1): 9. doi: 10.1007/s44336-024-00009-2.
|
| [6] |
FOURATI F and ALOUINI M S. Artificial intelligence for satellite communication: A review[J]. Intelligent and Converged Networks, 2021, 2(3): 213–243. doi: 10.23919/ICN.2021.0015.
|
| [7] |
SUN Chuanneng, HUANG Songjun, and POMPILI D. LLM-based multi-agent decision-making: Challenges and future directions[J]. IEEE Robotics and Automation Letters, 2025, 10(6): 5681–5688. doi: 10.1109/lra.2025.3562371.
|
| [8] |
SHI Qian, HE Da, LIU Zhengyu, et al. Globe230k: A benchmark dense-pixel annotation dataset for global land cover mapping[J]. Journal of Remote Sensing, 2023, 3: 0078. doi: 10.34133/remotesensing.0078.
|
| [9] |
HU Fengming, XU Feng, WANG R, et al. Conceptual study and performance analysis of tandem multi-antenna spaceborne SAR interferometry[J]. Journal of Remote Sensing, 2024, 4: 0137. doi: 10.34133/remotesensing.0137.
|
| [10] |
JIANG Liguang, NIELSEN K, and ANDERSEN O B. Beyond exact repeat missions: Embracing geodetic altimetry for inland water monitoring and modeling[J]. Journal of Remote Sensing, 2024, 4: 0269. doi: 10.34133/remotesensing.0269.
|
| [11] |
JI H R and HUANG Dianyuan. A mission planning method for multi-satellite wide area observation[J]. International Journal of Advanced Robotic Systems, 2019, 16(6): 1729881419890715. doi: 10.1177/1729881419890715.
|
| [12] |
SONG Yanjie, ZHOU Ziyu, ZHANG Zhongshan, et al. A framework involving MEC: Imaging satellites mission planning[J]. Neural Computing and Applications, 2020, 32(19): 15329–15340. doi: 10.1007/s00521-019-04047-6.
|
| [13] |
ZHANG Guohui, LI Xinhong, WANG Xun, et al. Research on the prediction problem of satellite mission schedulability based on Bi-LSTM model[J]. Aerospace, 2022, 9(11): 676. doi: 10.3390/aerospace9110676.
|
| [14] |
LI Zhouxiao and LIU Yuan. Onboard autonomous mission generation method based on user preference[J]. Advances in Space Research, 2024, 74(1): 437–453. doi: 10.1016/j.asr.2024.03.055.
|
| [15] |
CARRASCO A, RODRIGUEZ-FERNANDEZ V, and LINARES R. Large language models as autonomous spacecraft operators in Kerbal Space Program[J]. Advances in Space Research, 2025, 76(6): 3480–3497. doi: 10.1016/j.asr.2025.06.034.
|
| [16] |
WU Di, ZHANG R, ZUCCHELLI E M, et al. APBench and benchmarking large language model performance in fundamental astrodynamics problems for space engineering[J]. Scientific Reports, 2025, 15(1): 7944. doi: 10.1038/s41598-025-91150-5.
|
| [17] |
RAMAMONJISON R, YU T T L, LI R, et al. NL4Opt competition: Formulating optimization problems based on their natural language descriptions[C]. The NeurIPS 2022 Competitions Track, New Orleans, USA, 2022: 189–203.
|
| [18] |
XIAO Ziyang, ZHANG Dongxiang, WU Yangjun, et al. Chain-of-experts: When LLMs meet complex operations research problems[C]. The Twelfth International Conference on Learning Representations, Vienna, Austria, 2024.
|
| [19] |
ASTORGA N, LIU T, XIAO Yuanzhang, et al. Autoformulation of mathematical optimization models using LLMs[C]. The 42nd International Conference on Machine Learning, Vancouver, Canada, 2025.
|
| [20] |
JIANG Caigao, SHU Xiang, QIAN Hong, et al. LLMOPT: Learning to define and solve general optimization problems from scratch[C]. The 13th International Conference on Learning Representations, Singapore, Singapore, 2025.
|
| [21] |
HUANG Chenyu, TANG Zhengyang, HU Shixi, et al. ORLM: A customizable framework in training large models for automated optimization modeling[J]. Operations Research, 2025, 73(6): 2986–3009. doi: 10.1287/opre.2024.1233.
|
| [22] |
AHMADITESHNIZI A, GAO Wenzhi, and UDELL M. OptiMUS: Optimization modeling using MIP solvers and large language models[EB/OL]. https://doi.org/10.48550/arXiv.2310.06116, 2023.
|
| [23] |
YE Haoran, WANG Jiarui, CAO Zhiguang, et al. ReEvo: Large language models as hyper-heuristics with reflective evolution[C]. The 38th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2024.
|
| [24] |
YAO Shunyu, LIU Fei, LIN Xi, et al. Multi-objective evolution of heuristic using large language model[C]. The 39th AAAI Conference on Artificial Intelligence, Philadelphia, USA, 2025: 27144–27152. doi: 10.1609/aaai.v39i25.34922.
|
| [25] |
DAT P V T, DOAN L, and BINH H T T. HSEvo: Elevating automatic heuristic design with diversity-driven harmony search and genetic algorithm using LLMs[C]. The 39th AAAI Conference on Artificial Intelligence, Philadelphia, USA, 2025: 26931–26938. doi: 10.1609/aaai.v39i25.34898.
|
| [26] |
SURINA A, MANSOURI A, QUAEDVLIEG L, et al. Algorithm discovery with LLMs: Evolutionary search meets reinforcement learning[EB/OL]. https://doi.org/10.48550/arXiv.2504.05108, 2025.
|
| [27] |
LI Zhanxian, YE Nan, and HE Yifeng. Meteorological data transmission management system based on multi-source satellite data[C]. 2023 IEEE 2nd International Conference on Electrical Engineering, Big Data and Algorithms, Changchun, China, 2023: 1343–1346. doi: 10.1109/EEBDA56825.2023.10090642.
|