| Citation: | WEI Puyuan, HE Lei. A Deep Reinforcement Learning Enhanced Adaptive Large Neighborhood Search for Imaging Satellite Scheduling[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251009 |
| [1] |
KASLOW D. Planning and scheduling of earth observing satellites[C]. 2007 IEEE Aerospace Conference, Big Sky, MT, USA, 2007: 1-12.DOI: 10.1109/AERO.2007.352824.
|
| [2] |
CHEN Ming, DU Yonghao, TANG Ke, et al. Learning to construct a solution for the agile satellite scheduling problem with time-dependent transition times[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(10): 5949–5963. doi: 10.1109/TSMC.2024.3411640.
|
| [3] |
LIU Quanyong, PENG Jiangtao, ZHANG Genwei, et al. Deep contrastive learning network for small-sample hyperspectral image classification[J]. Journal of Remote Sensing, 2023, 3: 0025. doi: 10.34133/remotesensing.0025.
|
| [4] |
HAN Zonghao, ZHANG Ziye, ZHANG Shun, et al. Aerial visible-to-infrared image translation: Dataset, evaluation, and baseline[J]. Journal of Remote Sensing, 2023, 3: 0096. doi: 10.34133/remotesensing.0096.
|
| [5] |
MEI Shaohui, LIAN Jiawei, WANG Xiaofei, et al. A comprehensive study on the robustness of deep learning-based image classification and object detection in remote sensing: Surveying and benchmarking[J]. Journal of Remote Sensing, 2024, 4: 0219. doi: 10.34133/remotesensing.0219.
|
| [6] |
KRIGMAN S, GRINSHPOUN T, and DERY L. Scheduling of Earth observing satellites using distributed constraint optimization[J]. Journal of Scheduling, 2024, 27(5): 507–524. doi: 10.1007/s10951-024-00816-x.
|
| [7] |
WU Jian, CHEN Yuning, HE Yongming, et al. Survey on autonomous task scheduling technology for Earth observation satellites[J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1176–1189. doi: 10.23919/JSEE. 2022.000141.
|
| [8] |
FENG Xiaoen, LI Yuqing, and XU Minqiang.Multi-satellite cooperative scheduling method for large-scaletasks based on hybrid graph neural network andmetaheuristic algorithm[J]. Advanced EngineeringInformatics, 2024, 60: 102362. doi: 10.1016/j.aei.2024.102362.
|
| [9] |
PISINGER D and ROPKE S. A general heuristic for vehicle routing problems[J]. Computers & Operations Research, 2007, 34(8): 2403–2435. doi: 10.1016/j.cor.2005.09.012.
|
| [10] |
DOERR C, DREO J, and KERSCHKE P. Making a case for (Hyper-)parameter tuning as benchmark problems[C]. The Genetic and Evolutionary Computation Conference Companion, Prague, Czech Republic, 2019: 1755–1764. doi: 10.1145/3319619.3326857.
|
| [11] |
SANTINI A, ROPKE S, and HVATTUM L M. A comparison of acceptance criteria for the adaptive large neighbourhood search metaheuristic[J]. Journal of Heuristics, 2018, 24(5): 783–815. doi: 10.1007/s10732-018-9377-x.
|
| [12] |
WU Guohua, XIANG Zhiqing, WANG Yalin, et al. Improved adaptive large neighborhood search algorithm based on the two-stage framework for scheduling multiple super-agile satellites[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(5): 7185–7200. doi: 10.1109/TAES.2024.3416427.
|
| [13] |
BENAVIDES-ROBLES M T, VALENCIA-RIVERA G H, CRUZ-DUARTE J M, et al. Robotic mobile fulfillment system: A systematic review[J]. IEEE Access, 2024, 12: 16767–16782. doi: 10.1109/ACCESS.2024.3359434.
|
| [14] |
SHARIAT R and HUANG Kai. A large-scale neighborhood search algorithm for multi-activity tour scheduling problems[J]. Journal of Heuristics, 2024, 30(5): 225–267. doi: 10.1007/s10732-024-09527-0.
|
| [15] |
BOGYRBAYEVA A, MERALIYEV M, MUSTAKHOV T, et al. Machine learning to solve vehicle routing problems: A survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(6): 4754–4772. doi: 10.1109/TITS.2023.3334976.
|
| [16] |
FENG Guosheng, WANG Hongzhi, and WANG Chunnan. Search for deep graph neural networks[J]. Information Sciences, 2023, 649: 119617. doi: 10.1016/j.ins.2023.119617.
|
| [17] |
WANG Chao, CAO Mingjiu, JIANG Hang, et al. A deep reinforcement learning-based adaptive large neighborhood search for capacitated electric vehicle routing problems[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(5): 3907–3919. doi: 10.1109/TETCI.2024.3364966.
|
| [18] |
LAND A H and DOIG A G. An automatic method of solving discrete programming problems[J]. Econometrica, 1960, 28(3): 497–520. doi: 10.2307/1910129.
|
| [19] |
BELLMAN R and KALABA R. Dynamic Programming and Modern Control Theory[M]. New York, USA: Academic Press, 1965: 1–112.
|
| [20] |
ANTUORI V, WOJTOWICZ D T, and HEBRARD E. Solving the agile Earth observation satellite scheduling problem with CP and local search[C]. 31st International Conference on Principles and Practice of Constraint Programming, Glasgow, UK, 2025: 3: 1–3: 22. doi: 10.4230/LIPIcs.CP.2025.3.
|
| [21] |
赵静, 赵卫虎, 李勇军, 等. 基于改进NSGA-Ⅱ算法的微波/光混合链路中继卫星多目标资源调度算法[J]. 中国激光, 2013, 40(12): 1205003. doi: 10.3788/CJL201340.1205003.
ZHAO Jing, ZHAO Weihu, LI Yongjun, et al. Multi-objective resources scheduling algorithm for microwave and laser hybrid links data relay satellite based on improved NSGA-Ⅱ algorithm[J]. Chinese Journal of Lasers, 2013, 40(12): 1205003. doi: 10.3788/CJL201340.1205003.
|
| [22] |
KANDEPI R, SAINI H, GEORGE R K, et al. Agile earth observation satellite constellations scheduling for large area target imaging using heuristic search[J]. Acta Astronautica, 2024, 219: 670–677. doi: 10.1016/j.actaastro.2024.03.027.
|
| [23] |
WU Jian, SONG Bingyu, ZHANG Guoting, et al. A data-driven improved genetic algorithm for agile earth observation satellite scheduling with time-dependent transition time[J]. Computers & Industrial Engineering, 2022, 174: 108823. doi: 10.1016/j.cie.2022.108823.
|
| [24] |
HAN Chao, GU Yan, WU Guohua, et al. Simulated annealing-based heuristic for multiple agile satellites scheduling under cloud coverage uncertainty[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 53(5): 2863-2874.DOI: 10.1109/TSMC.2022.3218579.
|
| [25] |
HE Lei, LIU Xiaolu, LAPORTE G, et al. An improved adaptive large neighborhood search algorithm for multiple agile satellites scheduling[J]. Computers & Operations Research, 2018, 100: 12–25. doi: 10.1016/j.cor.2018.06.020.
|
| [26] |
YAO Feng, CHEN Yingguo, WANG Ling, et al. A bilevel evolutionary algorithm for large-scale multiobjective task scheduling in multiagile earth observation satellite systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(6): 3512–3524. doi: 10.1109/TSMC.2024.3359265.
|
| [27] |
CHEN Ming, LI Bohua, XING Lining, et al. DEEM: A differential evolution ensemble method for optimizing agile satellite scheduling[J]. Expert Systems with Applications, 2025, 272: 126771. doi: 10.1016/j.eswa.2025.126771.
|
| [28] |
LIU Xiaolu, LAPORTE G, CHEN Yingwu, et al. An adaptive large neighborhood search metaheuristic for agile satellite scheduling with time-dependent transition time[J]. Computers & Operations Research, 2017, 86: 41–53. doi: 10.1016/j.cor.2017.04.006.
|
| [29] |
DA ROS F, SOPRANO M, DI GASPERO L, et al. Large language models for combinatorial optimization: A systematic review[EB/OL]. https://arxiv.org/abs/2507.03637, 2025.
|
| [30] |
LIU Zheng, XIONG WeI, HAN Chi, et al. A multi-pointer network for multiple agile optical satellite scheduling problem[J]. Aerospace, 2024, 11(10): 792. doi: 10.3390/aerospace11100792.
|
| [31] |
CHEN Ming, CHEN Yuning, CHEN Yingwu, et al. Deep reinforcement learning for agile satellite scheduling problem[C]. 2019 IEEE Symposium Series on Computational Intelligence, Xiamen, China, 2019: 126–132. doi: 10.1109/SSCI44817.2019.9002957.
|
| [32] |
CHUN Jie, YANG Wenyuan, LIU Xiaolu, et al. Deep reinforcement learning for the agile earth observation satellite scheduling problem[J]. Mathematics, 2023, 11(19): 4059. doi: 10.3390/math11194059.
|
| [33] |
MAZYAVKINA N, SVIRIDOV S, IVANOV S, et al. Reinforcement learning for combinatorial optimization: A survey[J]. Computers & Operations Research, 2021, 134: 105400. doi: 10.1016/j.cor.2021.105400.
|
| [34] |
LONG Yaosong, SHAN Chengjun, SHANG Wei, et al. Deep reinforcement learning-based approach with varying-scale generalization for the earth observation satellite scheduling problem considering resource consumptions and supplements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(3): 2572–2585. doi: 10.1109/TAES.2024.3379169.
|
| [35] |
PENG Guansheng, SONG Guopeng, HE Yongming, et al. Solving the agile Earth observation satellite scheduling problem with time-dependent transition times[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(3): 1614–1625. doi: 10.1109/TSMC.2020.3031738.
|