| Citation: | XU Yanjie, SUN Hao, LIN Qinjie, JI Kefeng, KUANG Gangyao. Residual Subspace Prototype Constraint for SAR Target Class-Incremental Recognition[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251007 |
| [1] |
罗汝, 赵凌君, 何奇山, 等. SAR图像飞机目标智能检测识别技术研究进展与展望[J]. 雷达学报, 2024, 13(2): 307–330. doi: 10.12000/JR23056.
LUO Ru, ZHAO Lingjun, HE Qishan, et al. Intelligent technology for aircraft detection and recognition through SAR imagery: Advancements and prospects[J]. Journal of Radars, 2024, 13(2): 307–330. doi: 10.12000/JR23056.
|
| [2] |
翁星星, 庞超, 许博文, 等. 面向遥感图像解译的增量深度学习[J]. 电子与信息学报, 2024, 46(10): 3979–4001. doi: 10.11999/JEIT240172.
WENG Xingxing, PANG Chao, XU Bowen, et al. Incremental deep learning for remote sensing image interpretation[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3979–4001. doi: 10.11999/JEIT240172.
|
| [3] |
ZHOU Dawei, CAI Ziwen, YE Hanjia, et al. Revisiting class-incremental learning with pre-trained models: Generalizability and adaptivity are all you need[J]. International Journal of Computer Vision, 2025, 133(3): 1012–1032. doi: 10.1007/s11263-024-02218-0.
|
| [4] |
MCDONNELL M D, GONG Dong, PARVENEH A, et al. RanPAC: Random projections and pre-trained models for continual learning[C]. The 37th International Conference on Neural Information Processing Systems, New Orleans, United States, 2023: 526. doi: 10.48550/arXiv.2307.02251.
|
| [5] |
ZHOU Dawei, SUN HaiLong, YE Hanjia, et al. Expandable subspace ensemble for pre-trained model-based class-incremental learning[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, United States, 2024: 23554–23564. doi: 10.1109/CVPR52733.2024.02223.
|
| [6] |
SUN Hailong, ZHOU Dawei, ZHAO Hanbin, et al. MOS: Model surgery for pre-trained model-based class-incremental learning[C]. The 39th AAAI Conference on Artificial Intelligence, Philadelphia, United States, 2025: 20699–20707. doi: 10.1609/aaai.v39i19.34281.
|
| [7] |
赵琰, 赵凌君, 张思乾, 等. 自监督解耦动态分类器的小样本类增量SAR图像目标识别[J]. 电子与信息学报, 2024, 46(10): 3936–3948. doi: 10.11999/JEIT231470.
ZHAO Yan, ZHAO Lingjun, ZHANG Siqian, et al. Few-shot class-incremental SAR image target recognition using self-supervised decoupled dynamic classifier[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3936–3948. doi: 10.11999/JEIT231470.
|
| [8] |
LI Bin, CUI Zongyong, SUN Yuxuan, et al. Density coverage-based exemplar selection for incremental SAR automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5211713. doi: 10.1109/TGRS.2023.3293509.
|
| [9] |
DANG Sihang, CAO Zongjie, CUI Zongyong, et al. Open set incremental learning for automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4445–4456. doi: 10.1109/TGRS.2019.2891266.
|
| [10] |
DANG Sihang, CAO Zongjie, CUI Zongyong, et al. Class boundary exemplar selection based incremental learning for automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5782–5792. doi: 10.1109/TGRS.2020.2970076.
|
| [11] |
ZHAO Yan, ZHAO Lingjun, DING Ding, et al. Few-shot class-incremental SAR target recognition via cosine prototype learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5212718. doi: 10.1109/TGRS.2023.3298016.
|
| [12] |
XU Yanjie, SUN Hao, ZHAO Yan, et al. Simulated data feature guided evolution and distillation for incremental SAR ATR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5215917. doi: 10.1109/TGRS.2024.3419794.
|
| [13] |
ZHOU Yongsheng, ZHANG Shuo, SUN Xiaokun, et al. SAR target incremental recognition based on hybrid loss function and class-bias correction[J]. Applied Sciences, 2022, 12(3): 1279. doi: 10.3390/app12031279.
|
| [14] |
OVEIS A H, GIUSTI E, GHIO S, et al. Incremental learning in synthetic aperture radar images using openmax algorithm[C]. The IEEE Radar Conference, San Antonio, United States, 2023: 1–6. doi: 10.1109/RadarConf2351548.2023.10149627.
|
| [15] |
HU Chao, HAO Ming, WANG Wenying, et al. Incremental learning using feature labels for synthetic aperture radar automatic target recognition[J]. IET Radar, Sonar & Navigation, 2022, 16(11): 1872–1880. doi: 10.1049/rsn2.12303.
|
| [16] |
WANG Li, YANG Xinyao, TAN Haoyue, et al. Few-shot class-incremental SAR target recognition based on hierarchical embedding and incremental evolutionary network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5204111. doi: 10.1109/TGRS.2023.3248040.
|
| [17] |
SHI Qian, HE Da, LIU Zhengyu, et al. Globe230k: A benchmark dense-pixel annotation dataset for global land cover mapping[J]. Journal of Remote Sensing, 2023, 3: 0078. doi: 10.34133/remotesensing.0078.
|
| [18] |
HU Fengming, XU Feng, WANG R, et al. Conceptual study and performance analysis of tandem multi-antenna spaceborne SAR interferometry[J]. Journal of Remote Sensing, 2024, 4: 0137. doi: 10.34133/remotesensing.0137.
|
| [19] |
MEI Shaohui, LIAN Jiawei, WANG Xiaofei, et al. A comprehensive study on the robustness of deep learning-based image classification and object detection in remote sensing: Surveying and benchmarking[J]. Journal of Remote Sensing, 2024, 4: 0219. doi: 10.34133/remotesensing.0219.
|