| Citation: | JI Hong, GAO Zhi, CHEN Boan, AO Wei, CAO Min, WANG Qiao. Knowledge-Guided Few-Shot Earth Surface Anomalies Detection[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251000 |
| [1] |
王桥. 地表异常遥感探测与即时诊断方法研究框架[J]. 测绘学报, 2022, 51(7): 1141–1152. doi: 10.11947/j.AGCS.2022.20220124.
WANG Qiao. Research framework of remote sensing monitoring and real-time diagnosis of earth surface anomalies[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1141–1152. doi: 10.11947/j.AGCS.2022.20220124.
|
| [2] |
WEI Haishuo, JIA Kun, WANG Qiao, et al. Real-time remote sensing detection framework of the earth's surface anomalies based on a priori knowledge base[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 122: 103429. doi: 10.1016/j.jag.2023.103429.
|
| [3] |
高智, 胡傲涵, 陈泊安, 等. 多层级几何—语义融合的图神经网络地表异常检测框架[J]. 遥感学报, 2024, 28(7): 1760–1770. doi: 10.11834/jrs.20243301.
GAO Zhi, HU Aohan, CHEN Boan, et al. A hierarchical geometry-to-semantic fusion GNN framework for earth surface anomalies detection[J]. National Remote Sensing Bulletin, 2024, 28(7): 1760–1770. doi: 10.11834/jrs.20243301.
|
| [4] |
刘思琪, 高智, 陈泊安, 等. 基于图网络的遥感地物关系表达与推理的地表异常检测[J]. 电子与信息学报, 2025, 47(6): 1690–1703. doi: 10.11999/JEIT240883.
LIU Siqi, GAO Zhi, CHEN Boan, et al. Earth surface anomaly detection using graph neural network-based representation and reasoning of remote sensing geographic object relationships[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1690–1703. doi: 10.11999/JEIT240883.
|
| [5] |
ZHAO Chuanwu, PAN Yaozhong, WU Hanyi, et al. A novel spectral index for vegetation destruction event detection based on multispectral remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 11290–11309. doi: 10.1109/JSTARS.2024.3412737.
|
| [6] |
WU Hanyi, ZHAO Chuanwu, ZHU Yu, et al. A multiscale examination of heat health risk inequality and its drivers in mega-urban agglomeration: A case study in the Yangtze River Delta, China[J]. Journal of Cleaner Production, 2024, 458: 142528. doi: 10.1016/j.jclepro.2024.142528.
|
| [7] |
WEI Haishuo, JIA Kun, WANG Qiao, et al. A remote sensing index for the detection of multi-type water quality anomalies in complex geographical environments[J]. International Journal of Digital Earth, 2024, 17(1): 2313695. doi: 10.1080/17538947.2024.2313695.
|
| [8] |
ROY D P, JIN Y, LEWIS P E, et al. Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data[J]. Remote Sensing of Environment, 2005, 97(2): 137–162. doi: 10.1016/j.rse.2005.04.007.
|
| [9] |
王立波, 高智, 王桥. 融合遥感指数协同推理的地表异常检测方法[J]. 电子与信息学报, 2025, 47(6): 1669–1678. doi: 10.11999/JEIT240882.
WANG Libo, GAO Zhi, and WANG Qiao. A novel earth surface anomaly detection method based on collaborative reasoning of deep learning and remote sensing indexes[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1669–1678. doi: 10.11999/JEIT240882.
|
| [10] |
ZHANG Zilun, ZHAO Tiancheng, GUO Yulong, et al. RS5M and GeoRSCLIP: A large-scale vision- language dataset and a large vision-language model for remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5642123. doi: 10.1109/TGRS.2024.3449154.
|
| [11] |
GE Junyao, ZHANG Xu, ZHENG Yang, et al. RSTeller: Scaling up visual language modeling in remote sensing with rich linguistic semantics from openly available data and large language models[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2025, 226: 146–163. doi: 10.1016/j.isprsjprs.2025.05.002.
|
| [12] |
ZHENG Zhuo, ZHONG Yanfei, WANG Junjue, et al. Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters[J]. Remote Sensing of Environment, 2021, 265: 112636. doi: 10.1016/j.rse.2021.112636.
|
| [13] |
KYRKOU C and THEOCHARIDES T. EmergencyNet: Efficient aerial image classification for drone-based emergency monitoring using atrous convolutional feature fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1687–1699. doi: 10.1109/JSTARS.2020.2969809.
|
| [14] |
CHEN Boan, GAO Zhi, LI Ziyao, et al. Hierarchical GNN framework for earth’s surface anomaly detection in single satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5627314. doi: 10.1109/TGRS.2024.3408330.
|
| [15] |
CHEN Wenyuan, LIU Yen-Cheng, KIRA Zsolt, et al. A closer look at few-shot classification[C]. International Conference on Learning Representations, New Orleans, USA, 2019. (查阅网上资料, 未找到本条文献信息, 请确认).
|
| [16] |
SNELL J, SWERSKY K, and ZEMEL R. Prototypical networks for few-shot learning[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 4080–4090.
|
| [17] |
FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]. Proceedings of the 34th International Conference on Machine Learning - Volume 70, Sydney, Australia, 2017: 1126–1135.
|
| [18] |
RADFORD A, KIM J, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]. Proceedings of the 38th International Conference on Machine Learning, 2021: 8748–8763. (查阅网上资料, 未找到本条文献出版地信息, 请确认).
|
| [19] |
XU Jingyi and LE H. Generating representative samples for few-shot classification[C]. Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 8993–9003. doi: 10.1109/CVPR52688.2022.00880.
|
| [20] |
ZHANG Baoquan, LI Xutao, YE Yunming, et al. Prototype completion with primitive knowledge for few-shot learning[C]. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 3753–3761. doi: 10.1109/CVPR46437.2021.00375.
|
| [21] |
LIU Fan, CHEN Delong, GUAN Zhangqingyun, et al. RemoteCLIP: A vision language foundation model for remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5622216. doi: 10.1109/TGRS.2024.3390838.
|
| [22] |
张永军, 李彦胜, 党博, 等. 多模态遥感基础大模型: 研究现状与未来展望[J]. 测绘学报, 2024, 53(10): 1942–1954. doi: 10.11947/j.AGCS.2024.20240019.
ZHANG Yongjun, LI Yansheng, DANG Bo, et al. Multi-modal remote sensing large foundation models: Current research status and future prospect[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1942–1954. doi: 10.11947/j.AGCS.2024.20240019.
|
| [23] |
OpenAI. 隆重推出ChatGPT[EB/OL]. https://openai.com/blog/chatgpt, 2022.
|
| [24] |
GUPTA R, HOSFELT D, DODGE S, et al. Creating xBD: A dataset for assessing building damage from satellite imagery[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 447–456. (查阅网上资料, 未找到本条文献信息, 请确认).
|
| [25] |
RUDNER T G J, RUSSWURM M, FIL J, et al. Multi3Net: Segmenting flooded buildings via fusion of multiresolution, multisensor, and multitemporal satellite imagery[C]. The Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, USA, 2019, 33: 702–709. doi: 10.1609/aaai.v33i01.3301702.
|
| [26] |
曾超, 曹振宇, 苏凤环, 等. 四川及周边滑坡泥石流灾害高精度航空影像及解译数据集(2008–2020年)[J]. 中国科学数据, 2022, 7(2): 191–201. doi: 10.11922/noda.2021.0005.zh.
ZENG Chao, CAO Zhenyu, SU Fenghuan, et al. A dataset of high-precision aerial imagery and interpretation of landslide and debris flow disaster in Sichuan and surrounding areas between 2008 and 2020[J]. China Scientific Data, 2022, 7(2): 195–205. doi: 10.11922/noda.2021.0005.zh.
|
| [27] |
CHENG Gong, HAN Junwei, LU Xiaoqiang. Remote sensing image scene classification: Benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865–1883. doi: 10.1109/JPROC.2017.2675998.
|
| [28] |
LI Haifeng, CUI Zhenqi, ZHU Zhiqiang, et al. RS-MetaNet: Deep metametric learning for few-shot remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6983–6994. doi: 10.1109/TGRS.2020.3027387.
|
| [29] |
LI Lingjun, HAN Junwei, YAO Xiwen, et al. DLA-MatchNet for few-shot remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7844–7853. doi: 10.1109/TGRS.2020.3033336.
|
| [30] |
XIA Guisong, HU Jingwen, HU Fan, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965–3981. doi: 10.1109/TGRS.2017.2685945.
|
| [31] |
MANGLA P, SINGH M, SINHA A, et al. Charting the right manifold: Manifold mixup for few-shot learning[C]. Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass, USA, 2020: 2207–2216. doi: 10.1109/WACV45572.2020.9093338.
|
| [32] |
SUNG F, YANG Yongxin, ZHANG Li, et al. Learning to compare: Relation network for few-shot learning[C]. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1199–1208. doi: 10.1109/CVPR.2018.00131.
|
| [33] |
VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]. Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 3637–3645.
|
| [34] |
NICHOL A, ACHIAM J, and SCHULMAN J. On first-order meta-learning algorithms[J]. arXiv preprint arXiv: 1803.02999, 2018. doi: 10.48550/arXiv.1803.02999. (查阅网上资料,不确定本文献类型是否正确,请确认).
|
| [35] |
CHENG Gong, CAI Liming, LANG Chunbo, et al. SPNet: Siamese-prototype network for few-shot remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5608011. doi: 10.1109/TGRS.2021.3099033.
|
| [36] |
ZENG Qingjie, GENG Jie, JIANG Wen, et al. IDLN: Iterative distribution learning network for few-shot remote sensing image scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8020505. doi: 10.1109/LGRS.2021.3109728.
|
| [37] |
LI Xiaomin, SHI Daqian, DIAO Xiaolei, et al. SCL-MLNet: Boosting few-shot remote sensing scene classification via self-supervised contrastive learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5801112. doi: 10.1109/TGRS.2021.3109268.
|