| Citation: | SONG Miao, CHEN Zhiqiang, WANG Peisong, XING Xiangwei, HUANG Liwei, CHENG Jian. DetDiffRS: A Detail-Enhanced Diffusion Model for Remote Sensing Image Super-Resolution[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250995 |
| [1] |
张永生, 巩丹超, 刘军, 等. 高分辨率遥感卫星应用: 成像模型、处理算法及应用技术[M]. 北京: 科学出版社, 2004.
ZHANG Yongsheng, GONG Danchao, LIU Jun, et al. Applications of High-Resolution Remote Sensing Satellites[M]. Beijing: Science Press, 2004. (查阅网上资料, 未找到本条文献英文翻译, 请确认).
|
| [2] |
LI Songnian, DRAGICEVIC S, CASTRO F A, et al. Geospatial big data handling theory and methods: A review and research challenges[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115: 119–133. doi: 10.1016/j.isprsjprs.2015.10.012.
|
| [3] |
童旭东. 中国高分辨率对地观测系统重大专项建设进展[J]. 遥感学报, 2016, 20(5): 775–780. doi: 10.11834/jrs.20166302.
TONG Xudong. Development of China high-resolution earth observation system[J]. Journal of Remote Sensing, 2016, 20(5): 775–780. doi: 10.11834/jrs.20166302.
|
| [4] |
ZHU Xiaoxiang, TUIA D, MOU Lichao, et al. Deep learning in remote sensing: A comprehensive review and list of resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4): 8–36. doi: 10.1109/MGRS.2017.2762307.
|
| [5] |
FARSIU S, ROBINSON M D, ELAD M, et al. Fast and robust multiframe super resolution[J]. IEEE Transactions on Image Processing, 2004, 13(10): 1327–1344. doi: 10.1109/TIP.2004.834669.
|
| [6] |
WANG Qi, LI Qiang, and LI Xuelong. Spatial-spectral residual network for hyperspectral image super-resolution[J]. arXiv preprint arXiv: 2001.04609, 2020. doi: 10.48550/arXiv.2001.04609. (查阅网上资料,请作者核对文献类型及格式是否正确).
|
| [7] |
成科扬, 荣兰, 蒋森林, 等. 基于深度学习的遥感图像超分辨率重建方法综述[J]. 郑州大学学报: 工学版, 2022, 43(5): 8–16. doi: 10.13705/j.issn.1671-6833.2022.05.013.
CHENG Keyang, RONG Lan, JIANG Senlin, et al. Overview of methods for remote sensing image super-resolution reconstruction based on deep learning[J]. Journal of Zhengzhou University: Engineering Science, 2022, 43(5): 8–16. doi: 10.13705/j.issn.1671-6833.2022.05.013.
|
| [8] |
DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295–307. doi: 10.1109/TPAMI.2015.2439281.
|
| [9] |
JOHNSON J, ALAHI A, and FEI-FEI L. Perceptual losses for real-time style transfer and super-resolution[C]. 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 694–711. doi: 10.1007/978-3-319-46475-6_43.
|
| [10] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
|
| [11] |
TIAN Chunwei, ZHANG Xuanyu, ZHU Qi, et al. Generative adversarial networks for image super-resolution: A survey[J]. arXiv preprint arXiv: 2204.13620, 2022. doi: 10.48550/arXiv.2204.13620.
|
| [12] |
WANG Xintao, YU Ke, WU Shixiang, et al. ESRGAN: Enhanced super-resolution generative adversarial networks[C]. Proceedings of the European Conference on Computer Vision Workshops, Munich, Germany, 2019: 63–79. doi: 10.1007/978-3-030-11021-5_5.
|
| [13] |
彭晏飞, 高艺, 杜婷婷, 等. 生成对抗网络的单图像超分辨率重建方法[J]. 计算机科学与探索, 2020, 14(9): 1612–1620. doi: 10.3778/j.issn.1673-9418.1910067.
PENG Yanfei, GAO Yi, DU Tingting, et al. Single image super-resolution reconstruction method for generative adversarial network[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(9): 1612–1620. doi: 10.3778/j.issn.1673-9418.1910067.
|
| [14] |
HO J, JAIN A, and ABBEEL P. Denoising diffusion probabilistic models[C]. Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 574.
|
| [15] |
SONG Jiaming, MENG Chenlin, and ERMON S. Denoising diffusion implicit models[C]. 9th International Conference on Learning Representations, 2021. (查阅网上资料, 未找到本条文献出版地信息, 请确认并补充).
|
| [16] |
SAHARIA C, HO J, CHAN W, et al. Image super-resolution via iterative refinement[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4713–4726. doi: 10.1109/TPAMI.2022.3204461.
|
| [17] |
ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 10674–10685. doi: 10.1109/CVPR52688.2022.01042.
|
| [18] |
韩阳, 朱军鹏, 郭春雨, 等. 基于扩散模型的流场超分辨率重建方法[J]. 力学学报, 2023, 55(10): 2309–2320. doi: 10.6052/0459-1879-23-167.
HAN Yang, ZHU Junpeng, GUO Chunyu, et al. A flow field super-resolution reconstruction method based on diffusion model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2309–2320. doi: 10.6052/0459-1879-23-167.
|
| [19] |
XIA Guisong, BAI Xiang, DING Jian, et al. DOTA: A large-scale dataset for object detection in aerial images[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3974–3983. doi: 10.1109/CVPR.2018.00418.
|
| [20] |
DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 248–255. doi: 10.1109/CVPR.2009.5206848.
|
| [21] |
JUSTICE C O, VERMOTE E, TOWNSHEND J R G, et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4): 1228–1249. doi: 10.1109/36.701075.
|
| [22] |
甘甫平, 王润生, 王永江, 等. 基于遥感技术的土地利用与土地覆盖的分类方法[J]. 国土资源遥感, 1999, 11(4): 40–45. doi: 10.3969/j.issn.1001-070X.1999.04.008.
GAN Fuping, WANG Runsheng, WANG Yongjiang, et al. The classification method based on remote sensing techniques for land use and cover[J]. Remote Sensing for Land & Resources, 1999, 11(4): 40–45. doi: 10.3969/j.issn.1001-070X.1999.04.008.
|
| [23] |
张秀再, 沈涛, 许岱. 基于改进YOLOv8算法的遥感图像目标检测[J]. 激光与光电子学进展, 2024, 61(10): 1028001. doi: 10.3788/LOP231803.
ZHANG Xiuzai, SHEN Tao, and XU Dai. Remote-sensing image object detection based on improved YOLOv8 algorithm[J]. Laser & Optoelectronics Progress, 2024, 61(10): 1028001. doi: 10.3788/LOP231803.
|
| [24] |
SHAO Zhenfeng, WANG Lei, WANG Zhongyuan, et al. Remote sensing image super-resolution using sparse representation and coupled sparse autoencoder[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(8): 2663–2674. doi: 10.1109/JSTARS.2019.2925456.
|
| [25] |
ZHOU Weixun, GUAN Haiyan, LI Ziyu, et al. Remote sensing image retrieval in the past decade: Achievements, challenges, and future directions[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 1447–1473. doi: 10.1109/JSTARS.2023.3236662.
|
| [26] |
王海波, 马明国. 基于遥感的湖泊水域动态变化监测研究进展[J]. 遥感技术与应用, 2009, 24(5): 674–684. doi: 10.11873/j.issn.1004-0323.2009.5.674.
WANG Haibo and MA Mingguo. A review of monitoring change in lake water areas based on remote sensing[J]. Remote Sensing Technology and Application, 2009, 24(5): 674–684. doi: 10.11873/j.issn.1004-0323.2009.5.674.
|
| [27] |
BILJECKI F, STOTER J, LEDOUX H, et al. Applications of 3D city models: State of the art review[J]. ISPRS International Journal of Geo-Information, 2015, 4(4): 2842–2889. doi: 10.3390/ijgi4042842.
|
| [28] |
PARK S C, PARK M K, and KANG M G. Super-resolution image reconstruction: A technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3): 21–36. doi: 10.1109/MSP.2003.1203207.
|
| [29] |
KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(6): 1153–1160. doi: 10.1109/TASSP.1981.1163711.
|
| [30] |
KIM J, LEE J K, and LEE K M. Accurate image super-resolution using very deep convolutional networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1646–1654. doi: 10.1109/CVPR.2016.182.
|
| [31] |
KIM J, LEE J K, and LEE K M. Deeply-recursive convolutional network for image super-resolution[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1637–1645. doi: 10.1109/CVPR.2016.181.
|
| [32] |
DONG Chao, LOY C C, and TANG Xiao’ou. Accelerating the super-resolution convolutional neural network[C]. 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 391–407. doi: 10.1007/978-3-319-46475-6_25.
|
| [33] |
LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 1132–1140. doi: 10.1109/CVPRW.2017.151.
|
| [34] |
ZHANG Yulun, LI Kunpeng, LI Kai, et al. Image super-resolution using very deep residual channel attention networks[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 294–310. doi: 10.1007/978-3-030-01234-2_18.
|
| [35] |
MEI Yiqun, FAN Yuchen, and ZHOU Yuqian. Image super-resolution with non-local sparse attention[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 3516–3525. doi: 10.1109/CVPR46437.2021.00352.
|
| [36] |
NIU Ben, WEN Weilei, REN Wenqi, et al. Single image super-resolution via a holistic attention network[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 191–207. doi: 10.1007/978-3-030-58610-2_12.
|
| [37] |
HAUT J M, FERNANDEZ-BELTRAN R, PAOLETTI M E, et al. Remote sensing image superresolution using deep residual channel attention[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9277–9289. doi: 10.1109/TGRS.2019.2924818.
|
| [38] |
KONG Dezhi, GU Lingjia, LI Xiaofeng, et al. Multiscale residual dense network for the super-resolution of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5612612. doi: 10.1109/TGRS.2024.3370826.
|
| [39] |
WANG Hongyuan, CHENG Shuli, LI Yongming, et al. Lightweight remote-sensing image super-resolution via attention-based multilevel feature fusion network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 2005715. doi: 10.1109/TGRS.2023.3336524.
|
| [40] |
XIAO Huanling, CHEN Xintong, LUO Liuhui, et al. A dual-path feature reuse multi-scale network for remote sensing image super-resolution[J]. The Journal of Supercomputing, 2025, 81(1): 17. doi: 10.1007/s11227-024-06569-w.
|
| [41] |
CHEN Xiangyu, WANG Xintao, ZHOU Jiantao, et al. Activating more pixels in image super-resolution transformer[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 22367–22377. doi: 10.1109/CVPR52729.2023.02142.
|
| [42] |
LIU Jingyi and YANG Xiaomin. Multi-stage remote sensing super-resolution network with deep fusion and structure enhancement based on CNN and transformer[J]. Signal, Image and Video Processing, 2025, 19(5): 407. doi: 10.1007/s11760-025-03988-x.
|
| [43] |
LUGMAYR A, DANELLJAN M, VAN GOOL L, et al. SRFlow: Learning the super-resolution space with normalizing flow[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 715–732. doi: 10.1007/978-3-030-58558-7_42.
|
| [44] |
LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 105–114. doi: 10.1109/CVPR.2017.19.
|
| [45] |
MA Cheng, RAO Yongming, LU Jiwen, et al. Structure-preserving image super-resolution[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11): 7898–7911. doi: 10.1109/TPAMI.2021.3114428.
|
| [46] |
SONG Yang and ERMON S. Generative modeling by estimating gradients of the data distribution[C]. Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 1067.
|
| [47] |
LI Haoying, YANG Yifan, CHANG Meng, et al. SRDiff: Single image super-resolution with diffusion probabilistic models[J]. Neurocomputing, 2022, 479: 47–59. doi: 10.1016/j.neucom.2022.01.029.
|
| [48] |
LUO Ziwei, GUSTAFSSON F K, ZHAO Zheng, et al. Image restoration with mean-reverting stochastic differential equations[C]. Proceedings of the 40th International Conference on Machine Learning, Honolulu, USA, 2023: 23045–23066.
|
| [49] |
LIU Jinzhe, YUAN Zhiqiang, PAN Zhaoying, et al. Diffusion model with detail complement for super-resolution of remote sensing[J]. Remote Sensing, 2022, 14(19): 4834. doi: 10.3390/rs14194834.
|
| [50] |
HAN Lintao, ZHAO Yuchen, LV Hengyi, et al. Enhancing remote sensing image super-resolution with efficient hybrid conditional diffusion model[J]. Remote Sensing, 2023, 15(13): 3452. doi: 10.3390/rs15133452.
|
| [51] |
XIAO Yi, YUAN Qiangqiang, JIANG Kui, et al. EDiffSR: An efficient diffusion probabilistic model for remote sensing image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5601514. doi: 10.1109/TGRS.2023.3341437.
|
| [52] |
张文雪, 罗一涵, 刘雅卿, 等. 基于主动位移成像的图像超分辨率重建[J]. 光电工程, 2024, 51(1): 230290. doi: 10.12086/oee.2024.230290.
ZHANG Wenxue, LUO Yihan, LIU Yaqing, et al. Image super-resolution reconstruction based on active displacement imaging[J]. Opto-Electronic Engineering, 2024, 51(1): 230290. doi: 10.12086/oee.2024.230290.
|
| [53] |
房垚鑫, 郭宝峰, 马超. 基于改进点扩散函数的遥感图像超分辨率重建[J]. 激光技术, 2019, 43(5): 713–718. doi: 10.7510/jgjs.issn.1001-3806.2019.05.024.
FANG Yaoxin, GUO Baofeng, and MA Chao. Super-resolution reconstruction of remote sensing images based on the improved point spread function[J]. Laser Technology, 2019, 43(5): 713–718. doi: 10.7510/jgjs.issn.1001-3806.2019.05.024.
|
| [54] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015.
|
| [55] |
XIA Guisong, HU Jingwen, HU Fan, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965–3981. doi: 10.1109/TGRS.2017.2685945.
|
| [56] |
LI Ke, WAN Gang, CHENG Gong, et al. Object detection in optical remote sensing images: A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296–307. doi: 10.1016/j.isprsjprs.2019.11.023.
|
| [57] |
HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6629–6640.
|
| [58] |
WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861.
|
| [59] |
XIAO Yi, YUAN Qiangqiang, JIANG Kui, et al. TTST: A top-k token selective transformer for remote sensing image super-resolution[J]. IEEE Transactions on Image Processing, 2024, 33: 738–752. doi: 10.1109/TIP.2023.3349004.
|
| [60] |
LIU Quanyong, PENG Jiangtao, ZHANG Genwei, et al. Deep contrastive learning network for small-sample hyperspectral image classification[J]. Journal of Remote Sensing, 2023, 3: 0025. doi: 10.34133/remotesensing.0025.
|
| [61] |
SHI Qian, ZHU Jiajun, LIU Zhengyu, et al. The last puzzle of global building footprints—Mapping 280 million buildings in East Asia based on VHR images[J]. Journal of Remote Sensing, 2024, 4: 0138. doi: 10.34133/remotesensing.0138.
|
| [62] |
LIU Shuaijun, LIU Jia, TAN Xiaoyue, et al. A hybrid spatiotemporal fusion method for high spatial resolution imagery: Fusion of Gaofen-1 and Sentinel-2 over agricultural landscapes[J]. Journal of Remote Sensing, 2024, 4: 0159. doi: 10.34133/remotesensing.0159.
|
| [63] |
MEI Shaohui, LIAN Jiawei, WANG Xiaofei, et al. A comprehensive study on the robustness of deep learning-based image classification and object detection in remote sensing: Surveying and benchmarking[J]. Journal of Remote Sensing, 2024, 4: 0219. doi: 10.34133/remotesensing.0219.
|