| Citation: | WU Kanghui, GUO Zixun, FAN Yifei, XIE Jian, TAO Mingliang. Autonomous Radar Scan-Mode Recognition Method Based on High-Dimensional Features and Random Forest[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250985 |
| [1] |
何芸倩. 基于机器学习的多功能雷达辐射源识别技术研究[D]. [硕士论文], 电子科技大学, 2025. doi: 10.27005/d.cnki.gdzku.2025.001418.
HE Yunqian. Research on multifunction radar emitter identification technology based on machine learning[D]. [Master dissertation], University of Electronic Science and Technology of China, 2025. doi: 10.27005/d.cnki.gdzku.2025.001418.
|
| [2] |
李燕平. 机械扫描雷达的DBS成像和动目标检测研究[D]. [硕士论文], 西安电子科技大学, 2006. doi: 10.7666/d.Y1137370.
LI Yanping. Study of DBS imaging and moving targets detection in mechanical scanning radar[D]. [Master dissertation], Xidian University, 2006. doi: 10.7666/d.Y1137370.
|
| [3] |
陈舒敏, 郑文文, 杨程, 等. 机扫二维相控阵雷达自适应资源调度算法研究[J]. 舰船电子对抗, 2025, 48(1): 51–58. doi: 10.16426/j.cnki.jcdzdk.2025.01.009.
CHEN Shumin, ZHENG Wenwen, YANG Cheng, et al. Research on adaptive resource scheduling algorithm for two-dimensional mechanical scanning phased array radar[J]. Shipboard Electronic Countermeasure, 2025, 48(1): 51–58. doi: 10.16426/j.cnki.jcdzdk.2025.01.009.
|
| [4] |
李程, 王伟, 施龙飞, 等. 雷达天线扫描方式的自动识别方法[J]. 国防科技大学学报, 2014, 36(3): 156–163. doi: 10.11887/j.cn.201403028.
LI Cheng, WANG Wei, SHI Longfei, et al. Automatic recognition method of radar antenna scan type[J]. Journal of National University of Defense Technology, 2014, 36(3): 156–163. doi: 10.11887/j.cn.201403028.
|
| [5] |
嵇慧明, 于昊, 宋帅, 等. 基于改进粗糙集-云模型理论的空战态势评估[J]. 战术导弹技术, 2019(4): 20–27. doi: 10.16358/j.issn.1009-1300.2019.9.038.
JI Huiming, YU Hao, SONG Shuai, et al. Air combat situation assessment based on improved rough set-cloud model theory[J]. Tactical Missile Technology, 2019(4): 20–27. doi: 10.16358/j.issn.1009-1300.2019.9.038.
|
| [6] |
张文峰, 牟皓, 赵耀东, 等. 基于SVM与DNN的雷达扫描体制识别方法[J]. 电子信息对抗技术, 2022, 37(2): 33–37. doi: 10.3969/j.issn.1674-2230.2022.02.009.
ZHANG Wenfeng, MU Hao, ZHAO Yaodong, et al. Intelligent recognition of mechanical scanned radar and electronically scanned array based on support vector machine and deep neural network[J]. Electronic Information Warfare Technology, 2022, 37(2): 33–37. doi: 10.3969/j.issn.1674-2230.2022.02.009.
|
| [7] |
GREER T H. Automatic recognition of radar scan type[P]. US, 6697007B2, 2004.
|
| [8] |
BARSHAN B and ERAVCI B. Automatic radar antenna scan type recognition in electronic warfare[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 2908–2931 doi: 10.1109/TAES.2012.6324669.
|
| [9] |
QUAN Wei, LI Ping, and XU Fengkai. An algorithm of signal sorting and recognition of phased array radars[C]. The IEEE 10th International Conference on Signal Processing, Beijing, China, 2010: 1877–1880. doi: 10.1109/ICOSP.2010.5657138.
|
| [10] |
郭国华, 何明浩, 韩俊, 等. 基于脉幅信息的相控阵体制雷达识别技术[J]. 中国电子科学研究院学报, 2009, 4(6): 589–593. doi: 10.3969/j.issn.1673-5692.2009.06.008.
GUO Guohua, HE Minghao, HAN Jun, et al. Phased-array radar recognition technology based on pulse amplitude[J]. Journal of China Academy of Electronics and Information Technology, 2009, 4(6): 589–593. doi: 10.3969/j.issn.1673-5692.2009.06.008.
|
| [11] |
张玉虎, 周正. 基于信号聚集度的相控阵雷达识别技术[J]. 火力与指挥控制, 2018, 43(8): 22–24,30. doi: 10.3969/j.issn.1002-0640.2018.08.005.
ZHANG Yuhu and ZHOU Zheng. Recognition of phased-array radar based on analysis of aggregation degree[J]. Fire Control & Command Control, 2018, 43(8): 22–24,30. doi: 10.3969/j.issn.1002-0640.2018.08.005.
|
| [12] |
叶巍, 牟连云, 李仙茂. 基于脉冲包络的相控阵雷达识别技术研究[J]. 航天电子对抗, 2011, 27(1): 41–44,57. doi: 10.3969/j.issn.1673-2421.2011.01.012.
YE Wei, MU Lianyun, and LI Xianmao. Phased-array radar recognition technology study based on the resemble coefficient of pulse amplitude contour[J]. Aerospace Electronic Warfare, 2011, 27(1): 41–44,57. doi: 10.3969/j.issn.1673-2421.2011.01.012.
|
| [13] |
高刚, 孙盼杰, 刘正彬. 基于脉冲幅度及频率分析的雷达扫描方式识别[J]. 电子信息对抗技术, 2016, 31(6): 12–17. doi: 10.3969/j.issn.1674-2230.2016.06.003.
GAO Gang, SUN Panjie, and LIU Zhengbin. Automatic radar antenna scan type recognition based on analysis of pluses amplitude and frequency[J]. Electronic Information Countermeasure Technology, 2016, 31(6): 12–17. doi: 10.3969/j.issn.1674-2230.2016.06.003.
|
| [14] |
ZENG Jie and TANG Jinjun. Modeling dynamic traffic flow as visibility graphs: A network-scale prediction framework for lane-level traffic flow based on LPR data[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(4): 4173–4188. doi: 10.1109/TITS.2022.3231959.
|
| [15] |
李牛牛, 张云华. 基于可见图和全局相似度的时间序列预测分析[J]. 集成电路应用, 2025, 42(3): 348–351. doi: 10.19339/j.issn.1674-2583.2025.03.148.
LI Niuniu and ZHANG Yunhua. Analysis of time series forecasting based on visibility graph and global similarity[J]. Application of IC, 2025, 42(3): 348–351. doi: 10.19339/j.issn.1674-2583.2025.03.148.
|
| [16] |
ROY S S and CHATTERJEE S. Partial discharge detection framework employing spectral analysis of horizontal visibility graph[J]. IEEE Sensors Journal, 2021, 21(4): 4819–4826. doi: 10.1109/JSEN.2020.3028849.
|
| [17] |
LI Jingchen, SHI Haobin, CHEN Wenbai, et al. Semi-supervised detection model based on adaptive ensemble learning for medical images[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(1): 237–248. doi: 10.1109/TNNLS.2023.3282809.
|
| [18] |
陈俊英, 席月芸, 徐琳, 等. 基于MLP集成随机子空间决策树的航空发动机剩余使用寿命预测[J]. 航空发动机, 2024, 50(6): 81–87. doi: 10.13477/j.cnki.aeroengine.2024.06.012.
CHEN Junying, XI Yueyun, XU Lin, et al. Remaining useful life prediction of aeroengines based on MLP integrated random subspace decision trees[J]. Aeroengine, 2024, 50(6): 81–87. doi: 10.13477/j.cnki.aeroengine.2024.06.012.
|
| [19] |
YANG Yi, SUN Yan, LI Feng, et al. MGCNRF: Prediction of disease-related miRNAs based on multiple graph convolutional networks and random forest[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(11): 15701–15709 doi: 10.1109/TNNLS.2023.3289182.
|
| [20] |
王奕森, 夏树涛. 集成学习之随机森林算法综述[J]. 信息通信技术, 2018, 12(1): 49–55. doi: 10.3969/j.issn.1674-1285.2018.01.009.
WANG Yisen and XIA Shutao. A survey of random forests algorithms[J]. Information and Communications Technology, 2018, 12(1): 49–55. doi: 10.3969/j.issn.1674-1285.2018.01.009.
|