| Citation: | FAN Shenghua, YIN Hang, LIU Jian, QU Tao. A One-Shot Object Detection Method Fusing Dual-Branch Optimized SAM and Global-Local Collaborative Matching[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250982 |
| [1] |
LIU Quanyong, PENG Jiangtao, ZHANG Genwei, et al. Deep contrastive learning network for small-sample hyperspectral image classification[J]. Journal of Remote Sensing, 2023, 3: 0025. doi: 10.34133/remotesensing.0025.
|
| [2] |
邵延华, 张铎, 楚红雨, 等. 基于深度学习的YOLO目标检测综述[J]. 电子与信息学报, 2022, 44(10): 3697–3708. doi: 10.11999/JEIT210790.
SHAO Yanhua, ZHANG Duo, CHU Hongyu, et al. A review of YOLO object detection based on deep learning[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3697–3708. doi: 10.11999/JEIT210790.
|
| [3] |
MEI Shaohui, LIAN Jiawei, WANG Xiaofei, et al. A comprehensive study on the robustness of deep learning-based image classification and object detection in remote sensing: Surveying and benchmarking[J]. Journal of Remote Sensing, 2024, 4: 0219. doi: 10.34133/remotesensing.0219.
|
| [4] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587. doi: 10.1109/CVPR.2014.81.
|
| [5] |
REDMON J and FARHADI A. YOLO9000: Better, faster, stronger[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 7263–7271. doi: 10.1109/CVPR.2017.690.
|
| [6] |
LAW H and DENG Jia. CornerNet: Detecting objects as paired keypoints[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 734–750. doi: 10.1007/978-3-030-01264-9_45.
|
| [7] |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 213–229. doi: 10.1007/978-3-030-58452-8_13.
|
| [8] |
HAN Guangxing and LIM S N. Few-shot object detection with foundation models[C]. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2024: 28608–28618. doi: 10.1109/cvpr52733.2024.02703.
|
| [9] |
NASEER A, ALZAHRANI H A, ALMUJALLY N A, et al. Efficient multi-object recognition using GMM segmentation feature fusion approach[J]. IEEE Access, 2024, 12: 37165–37178. doi: 10.1109/ACCESS.2024.3372190.
|
| [10] |
DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 248–255. doi: 10.1109/CVPR.2009.5206848.
|
| [11] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
| [12] |
KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]. 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 4015–4026. doi: 10.1109/ICCV51070.2023.00371.
|
| [13] |
LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8759–8768. doi: 10.1109/CVPR.2018.00913.
|
| [14] |
MILIOTO A, MANDTLER L, and STACHNISS C. Fast instance and semantic segmentation exploiting local connectivity, metric learning, and one-shot detection for robotics[C]. 2019 International Conference on Robotics and Automation, Montreal, Canada, 2019: 20–24. doi: 10.1109/ICRA.2019.8793593.
|
| [15] |
ZHANG Wenwen, HU Yun, SHAN Hangguan, et al. Exploring base-class suppression with prior guidance for bias-free one-shot object detection[C]. The 38th AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2024: 7314–7322. doi: 10.1609/aaai.v38i7.28561.
|
| [16] |
DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 886–893. doi: 10.1109/CVPR.2005.177.
|
| [17] |
HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2961–2969. doi: 10.1109/ICCV.2017.322.
|
| [18] |
刘佳琳. 基于改进YOLOv8的行人和车辆检测算法的研究[D]. [硕士论文], 大连交通大学, 2025. doi: 10.26990/d.cnki.gsltc.2025.000813.
LIU Jialin. Research on improved YOLOv8-based pedestrian and vehicle detection algorithm[D]. [Master dissertation], Dalian Jiaotong University, 2025. doi: 10.26990/d.cnki.gsltc.2025.000813.
|
| [19] |
LIU Shilong, LI Feng, ZHANG Hao, et al. DAB-DETR: Dynamic anchor boxes are better queries for DETR[C]. The 10th International Conference on Learning Representations, 2022.
|
| [20] |
ZHAO Yian, LÜ Wenyu, XU Shangliang, et al. DETRs beat YOLOs on real-time object detection[C]. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 16965–16974. doi: 10.1109/CVPR52733.2024.01605.
|
| [21] |
WANG Yaqing, YAO Quanming, KWOK J T, et al. Generalizing from a few examples: A survey on few-shot learning[J]. ACM Computing Surveys (CSUR), 2021, 53(3): 63. doi: 10.1145/3386252.
|
| [22] |
SUN Bo, LI Banghuai, CAI Shengcai, et al. FSCE: Few-shot object detection via contrastive proposal encoding[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 7352–7362. doi: 10.1109/CVPR46437.2021.00727.
|
| [23] |
HU Hanzhe, BAI Shuai, LI Aoxue, et al. Dense relation distillation with context-aware aggregation for few-shot object detection[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 10185–10194. doi: 10.1109/CVPR46437.2021.01005.
|
| [24] |
KANG Bingyi, LIU Zhuang, WANG Xin, et al. Few-shot object detection via feature reweighting[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 8420–8429. doi: 10.1109/ICCV.2019.00851.
|
| [25] |
HAN Guangxing, MA Jiawei, HUANG Shiyuan, et al. Few-shot object detection with fully cross-transformer[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 5321–5330. doi: 10.1109/CVPR52688.2022.00525.
|
| [26] |
FU Kun, ZHANG Tengfei, ZHANG Yue, et al. OSCD: A one-shot conditional object detection framework[J]. Neurocomputing, 2021, 425: 243–255. doi: 10.1016/j.neucom.2020.04.092.
|
| [27] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]. The 9th International Conference on Learning Representations, 2021.
|
| [28] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2117–2125. doi: 10.1109/CVPR.2017.106.
|
| [29] |
LI Bo, WU Wei, WANG Qiang, et al. SiamRPN++: Evolution of siamese visual tracking with very deep networks[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 4282–4291. doi: 10.1109/CVPR.2019.00441.
|
| [30] |
HSIEH T I, LO Y C, CHEN H T, et al. One-shot object detection with co-attention and co-excitation[C]. The 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 245.
|
| [31] |
CHEN T I, LIU Y C, SU H T, et al. Dual-awareness attention for few-shot object detection[J]. IEEE Transactions on Multimedia, 2023, 25: 291–301. doi: 10.1109/TMM.2021.3125195.
|
| [32] |
MELEKHOV I, TIULPIN A, SATTLER T, et al. DGC-Net: Dense geometric correspondence network[C]. 2019 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2019: 1034–1042. doi: 10.1109/WACV.2019.00115.
|
| [33] |
EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303–338. doi: 10.1007/s11263-009-0275-4.
|
| [34] |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 740–755. doi: 10.1007/978-3-319-10602-1_48.
|
| [35] |
LI Bo, YAN Junjie, WU Wei, et al. High performance visual tracking with Siamese region proposal network[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8971–8980. doi: 10.1109/CVPR.2018.00935.
|
| [36] |
CHEN Dingjie, HSIEH H Y, and LIU T L. Adaptive image transformer for one-shot object detection[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville: IEEE, 2021: 12247–12256. doi: 10.1109/CVPR46437.2021.01207.
|
| [37] |
YANG Hanqing, CAI Sijia, SHENG Hualian, et al. Balanced and hierarchical relation learning for one-shot object detection[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 7591–7600. doi: 10.1109/CVPR52688.2022.00744.
|
| [38] |
INKAWHICH M, INKAWHICH N, YANG Hao, et al. OSR-ViT: A simple and modular framework for open-set object detection and discovery[C]. 2024 IEEE International Conference on Big Data, Washington, USA, 2024: 928–937. doi: 10.1109/BigData62323.2024.10826036.
|
| [39] |
HU Weiming, WANG Qiang, ZHANG Li, et al. SiamMask: A framework for fast online object tracking and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3072–3089. doi: 10.1109/TPAMI.2022.3172932.
|