| Citation: | LIAO Diling, LAI Tao, HUANG Haifeng, WANG Qingsong. LightMamba: A Lightweight Mamba Network for the Joint Classification of HSI and LiDAR Data[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250981 |
| [1] |
FAUVEL M, TARABALKA Y, BENEDIKTSSON J A, et al. Advances in spectral-spatial classification of hyperspectral images[J]. Proceedings of the IEEE, 2013, 101(3): 652–675. doi: 10.1109/jproc.2012.2197589.
|
| [2] |
ZHANG Xia, SUN Yanli, SHANG Kun, et al. Crop classification based on feature band set construction and object-oriented approach using hyperspectral images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(9): 4117–4128. doi: 10.1109/jstars.2016.2577339.
|
| [3] |
GHAMISI P, PLAZA J, CHEN Yushi, et al. Advanced spectral classifiers for hyperspectral images: A review[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(1): 8–32. doi: 10.1109/mgrs.2016.2616418.
|
| [4] |
PRICOPE N G, HALLS J N, DALTON E G, et al. Precision mapping of coastal wetlands: An integrated remote sensing approach using unoccupied aerial systems light detection and ranging and multispectral data[J]. Journal of Remote Sensing, 2024, 4: 0169. doi: 10.34133/remotesensing.0169.
|
| [5] |
SHI Cuiping, LIAO Diling, ZHANG Tianyu, et al. Hyperspectral image classification based on expansion convolution network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5528316. doi: 10.1109/tgrs.2022.3174015.
|
| [6] |
LIU Wenping, ZHANG Yuxiang, and DONG Yanni. Multifeature collaborative attention dynamic hypergraph convolutional network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5522115. doi: 10.1109/tgrs.2025.3598375.
|
| [7] |
LIU Quanyong, PENG Jiangtao, ZHANG Genwei, et al. Deep contrastive learning network for small-sample hyperspectral image classification[J]. Journal of Remote Sensing, 2023, 3: 0025. doi: 10.34133/remotesensing.0025.
|
| [8] |
ZHAO Xudong, TAO Ran, LI Wei, et al. Joint classification of hyperspectral and LiDAR data using hierarchical random walk and deep CNN architecture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(10): 7355–7370. doi: 10.1109/tgrs.2020.2982064.
|
| [9] |
LI Zhi, ZHENG Ke, GAO Lianru, et al. Feature reconstruction guided fusion network for hyperspectral and LiDAR classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 4408914. doi: 10.1109/tgrs.2025.3562246.
|
| [10] |
GAO Hongmin, YANG Yao, LI Chenming, et al. Multiscale residual network with mixed depthwise convolution for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4): 3396–3408. doi: 10.1109/tgrs.2020.3008286.
|
| [11] |
HONG Danfeng, HAN Zhu, YAO Jing, et al. SpectralFormer: Rethinking hyperspectral image classification with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5518615. doi: 10.1109/tgrs.2021.3130716.
|
| [12] |
WANG Minhui, SUN Yaxiu, XIANG Jianhong, et al. CITNet: Convolution interaction transformer network for hyperspectral and LiDAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5535918. doi: 10.1109/tgrs.2024.3477965.
|
| [13] |
PAN Yukai, WU Nan, and JIN Wei. Multimodal feature disentangle-fusion network for hyperspectral and LiDAR data classification[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 5510905. doi: 10.1109/lgrs.2024.3492252.
|
| [14] |
ZHU Fei, SHI Cuiping, SHI Kaijie, et al. Joint classification of hyperspectral and LiDAR data using hierarchical multimodal feature aggregation-based multihead axial attention transformer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5503817. doi: 10.1109/tgrs.2025.3533475.
|
| [15] |
GU A, GOEL K, and RÉ C. Efficiently modeling long sequences with structured state spaces[C]. Proceedings of the 10th International Conference on Learning Representations, 2022.
|
| [16] |
HE Yan, TU Bingtu, LIU Bo, et al. HSI-MFormer: Integrating mamba and transformer experts for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5621916. doi: 10.1109/tgrs.2025.3564167.
|
| [17] |
ZHUANG Peixian, ZHANG Xiaochen, WANG Hao, et al. FAHM: Frequency-aware hierarchical mamba for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 6299–6313. doi: 10.1109/jstars.2025.3539791.
|
| [18] |
LIAO Diling, WANG Qingsong, LAI Tao, et al. Joint classification of hyperspectral and LiDAR data based on mamba[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5530915. doi: 10.1109/tgrs.2024.3459709.
|
| [19] |
HE Yan, TU Bing, JIANG Puzhao, et al. Classification of multisource remote sensing data using slice mamba[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5505414. doi: 10.1109/tgrs.2025.3538553.
|
| [20] |
ZHANG Guanglian, ZHANG Zhanxu, DENG Jiangwei, et al. S2CrossMamba: Spatial–spectral cross-mamba for multimodal remote sensing image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 5510705. doi: 10.1109/lgrs.2024.3488036.
|
| [21] |
HANG Renlong, LI Zhu, GHAMISI P, et al. Classification of hyperspectral and LiDAR data using coupled CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 4939–4950. doi: 10.1109/tgrs.2020.2969024.
|
| [22] |
CAI Jianghui, ZHANG Min, YANG Haifeng, et al. A novel graph-attention based multimodal fusion network for joint classification of hyperspectral image and LiDAR data[J]. Expert Systems with Applications, 2024, 249: 123587. doi: 10.1016/j.eswa.2024.123587.
|
| [23] |
ZHAO Guangrui, YE Qiaolin, SUN Len, et al. Joint classification of hyperspectral and LiDAR data using a hierarchical CNN and transformer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5500716. doi: 10.1109/tgrs.2022.3232498.
|
| [24] |
HOFFMANN D S, CLASEN K N, and DEMIR B. Transformer-based multi-modal learning for multi-label remote sensing image classification[C]. IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023: 4891–4894. doi: 10.1109/igarss52108.2023.10281927.
|
| [25] |
ROY S K, SUKUL A, JAMALI A, et al. Cross hyperspectral and LiDAR attention transformer: An extended self-attention for land use and land cover classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5512815. doi: 10.1109/tgrs.2024.3374324.
|