| Citation: | WANG Zeyu, WANG Qingsong. A Morphology-Guided Decoupled Framework for Oriented SAR Ship Detection[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250979 |
| [1] |
DI BISCEGLIE M and GALDI C. CFAR detection of extended objects in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 833–843. doi: 10.1109/TGRS.2004.843190.
|
| [2] |
LENG Xiangguang, JI Kefeng, YANG Kai, et al. A bilateral CFAR algorithm for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1536–1540. doi: 10.1109/LGRS.2015.2412174.
|
| [3] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/tpami.2016.2577031.
|
| [4] |
GE Zheng, LIU Songtao, WANG Feng, et al. YOLOX: Exceeding YOLO series in 2021[EB/OL]. https://arxiv.org/abs/2107.08430, 2021.
|
| [5] |
CHEN Yuming, YUAN Xinbin, WANG Jiabao, et al. YOLO-MS: Rethinking multi-scale representation learning for real-time object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025, 47(6): 4240–4252. doi: 10.1109/tpami.2025.3538473.
|
| [6] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]. 9th International Conference on Learning Representations, Austria, 2021. (查阅网上资料, 未找到本条文献出版城市信息, 请确认并补充).
|
| [7] |
YU Yi, YANG Xue, LI Qingyun, et al. H2RBox-v2: Incorporating symmetry for boosting horizontal box supervised oriented object detection[C]. Proceedings of the 37th International Conference on Neural Information Processing Systems, New Orleans, USA, 2023: 2581.
|
| [8] |
YU Yi, YANG Xue, LI Yansheng, et al. Wholly-WOOD: Wholly leveraging diversified-quality labels for weakly-supervised oriented object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025, 47(6): 4438–4454. doi: 10.1109/TPAMI.2025.3542542.
|
| [9] |
HU Fengming, XU Feng, WANG R, et al. Conceptual study and performance analysis of tandem multi-antenna spaceborne SAR interferometry[J]. Journal of Remote Sensing, 2024, 4: 0137. doi: 10.34133/remotesensing.0137.
|
| [10] |
YOMMY A S, LIU Rongke, and WU Shuang. SAR image despeckling using refined lee filter[C]. 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 2015: 260–265. doi: 10.1109/IHMSC.2015.236.
|
| [11] |
KANG Yuzhuo, WANG Zhirui, ZUO Haoyu, et al. ST-Net: Scattering topology network for aircraft classification in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5202117. doi: 10.1109/tgrs.2023.3236987.
|
| [12] |
ZHANG Yipeng, LU Dongdong, QIU Xiaolan, et al. Scattering-point-guided RPN for oriented ship detection in SAR images[J]. Remote Sensing, 2023, 15(5): 1411. doi: 10.3390/rs15051411.
|
| [13] |
PAN Dece, GAO Xin, DAI Wei, et al. SRT-Net: Scattering region topology network for oriented ship detection in large-scale SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5202318. doi: 10.1109/tgrs.2024.3351366.
|
| [14] |
YUE Tingxuan, ZHANG Yanmei, WANG Jin, et al. A weak supervision learning paradigm for oriented ship detection in SAR image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5207812. doi: 10.1109/TGRS.2024.3375069.
|
| [15] |
WEI Shunjun, ZENG Xiangfeng, QU Qizhe, et al. HRSID: A high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 2020, 8: 120234–120254. doi: 10.1109/access.2020.3005861.
|
| [16] |
ZHANG Tianwen, ZHANG Xiaoling, LI Jianwei, et al. SAR ship detection dataset (SSDD): Official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13(18): 3690. doi: 10.3390/rs13183690.
|
| [17] |
ZHOU Yue, YANG Xue, ZHANG Gefan, et al. MMRotate: A rotated object detection benchmark using PyTorch[C]. Proceedings of the 30th ACM International Conference on Multimedia, Lisboa, Portugal, 2022: 7331–7334. doi: 10.1145/3503161.3548541.
|
| [18] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2999–3007. doi: 10.1109/iccv.2017.324.
|
| [19] |
YANG Xue, ZHANG Gefan, YANG Xiaojiang, et al. Detecting rotated objects as gaussian distributions and its 3-D generalization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4335–4354. doi: 10.1109/tpami.2022.3197152.
|
| [20] |
LI Jianfeng, CHEN Mingxu, HOU Siyuan, et al. An improved S2A-net algorithm for ship object detection in optical remote sensing images[J]. Remote Sensing, 2023, 15(18): 4559. doi: 10.3390/rs15184559.
|
| [21] |
DING Jian, XUE Nan, LONG Yang, et al. Learning RoI transformer for oriented object detection in aerial images[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 2844–2853. doi: 10.1109/cvpr.2019.00296.
|
| [22] |
TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: A simple and strong anchor-free object detector[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1922–1933. doi: 10.1109/tpami.2020.3032166.
|
| [23] |
DUAN Kaiwen, BAI Song, XIE Lingxi, et al. CenterNet++ for object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(5): 3509–3521. doi: 10.1109/tpami.2023.3342120.
|
| [24] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/cvpr.2016.90.
|
| [25] |
LIU Zhuang, MAO Hanzi, WU Chaoyuan, et al. A ConvNet for the 2020s[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 11966–11976. doi: 10.1109/cvpr52688.2022.01167.
|
| [26] |
HEALY J and MCINNES L. Uniform manifold approximation and projection[J]. Nature Reviews Methods Primers, 2024, 4(1): 82. doi: 10.1038/s43586-024-00363-x.
|