| Citation: | LI Yuankun, WANG Ze, ZHANG Qingtian, GAO Bin, WU Huaqiang. NAS4CIM: Tailored Neural Network Architecture Search for RRAM-Based Compute-in-Memory Chips[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250978 |
| [1] |
SANTORO G, TURVANI G, and GRAZIANO M. New logic-in-memory paradigms: An architectural and technological perspective[J]. Micromachines, 2019, 10(6): 368. doi: 10.3390/mi10060368.
|
| [2] |
蔺海荣, 段晨星, 邓晓衡, 等. 双忆阻类脑混沌神经网络及其在IoMT数据隐私保护中应用[J]. 电子与信息学报, 2025, 47(7): 2194–2210. doi: 10.11999/JEIT241133.
LIN Hairong, DUAN Chenxing, DENG Xiaoheng, et al. Dual-memristor brain-like chaotic neural network and its application in IoMT data privacy protection[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2194–2210. doi: 10.11999/JEIT241133.
|
| [3] |
江之行, 席悦, 唐建石, 等. 忆阻器及其存算一体应用研究进展[J]. 科技导报, 2024, 42(2): 31–49. doi: 10.3981/j.issn.1000-7857.2024.02.004.
JIANG Zhixing, XI Yue, TANG Jianshi, et al. Review of recent research on memristors and computing-in-memory applications[J]. Science & Technology Review, 2024, 42(2): 31–49. doi: 10.3981/j.issn.1000-7857.2024.02.004.
|
| [4] |
李冰, 午康俊, 王晶, 等. 基于忆阻器的图卷积神经网络加速器设计[J]. 电子与信息学报, 2023, 45(1): 106–115. doi: 10.11999/JEIT211435.
LI Bing, WU Kangjun, WANG Jing, et al. Design of graph convolutional network accelerator based on resistive random access memory[J]. Journal of Electronics & Information Technology, 2023, 45(1): 106–115. doi: 10.11999/JEIT211435.
|
| [5] |
WAN W, KUBENDRAN R, SCHAEFER C, et al. A compute-in-memory chip based on resistive random-access memory[J]. Nature, 2022, 608(7923): 504–512. doi: 10.1038/s41586-022-04992-8.
|
| [6] |
邝先验, 桓湘澜, 肖鸿彪, 等. 基于多端忆阻器的组合逻辑电路设计[J]. 电子元件与材料, 2024, 43(8): 1024–1030. doi: 10.14106/j.cnki.1001-2028.2024.1567.
KUANG Xianyan, HUAN Xianglan, XIAO Hongbiao, et al. Design of combinational logic circuit using multi-terminal memristor[J]. Electronic Components and Materials, 2024, 43(8): 1024–1030. doi: 10.14106/j.cnki.1001-2028.2024.1567.
|
| [7] |
陈长林, 骆畅航, 刘森, 等. 忆阻器类脑计算芯片研究现状综述[J]. 国防科技大学学报, 2023, 45(1): 1–14. doi: 10.11887/j.cn.202301001.
CHEN Changlin, LUO Changhang, LIU Sen, et al. Review on the memristor based neuromorphic chips[J]. Journal of National University of Defense Technology, 2023, 45(1): 1–14. doi: 10.11887/j.cn.202301001.
|
| [8] |
PANDAY D K, SUMAN S, KHAN S, et al. Fabrication and characterization of alumina based resistive RAM for space applications[C]. The IEEE 24th International Conference on Nanotechnology (NANO), Gijon, Spain, 2024: 253–257. doi: 10.1109/NANO61778.2024.10628609.
|
| [9] |
YAO Peng, WU Huaqiang, GAO Bin, et al. Fully hardware-implemented memristor convolutional neural network[J]. Nature, 2020, 577(7792): 641–646. doi: 10.1038/s41586-020-1942-4.
|
| [10] |
CAI Han, ZHU Ligeng, and HAN Song. ProxylessNAS: Direct neural architecture search on target task and hardware[C]. The 7th International Conference on Learning Representations (ICLR), New Orleans, USA, 2019.
|
| [11] |
NEGI S, CHAKRABORTY I, ANKIT A, et al. NAX: Neural architecture and memristive xbar based accelerator co-design[C]. The 59th ACM/IEEE Design Automation Conference (DAC), San Francisco, USA, 2022: 451–456. doi: 10.1145/3489517.3530476.
|
| [12] |
JIANG Weiwen, LOU Qiuwen, YAN Zheyu, et al. Device-circuit-architecture co-exploration for computing-in-memory neural accelerators[J]. IEEE Transactions on Computers, 2021, 70(4): 595–605. doi: 10.1109/TC.2020.2991575.
|
| [13] |
YUAN Zhihang, LIU Jingze, LI Xingchen, et al. NAS4RRAM: Neural network architecture search for inference on RRAM-based accelerators[J]. Science China Information Sciences, 2021, 64(6): 160407. doi: 10.1007/s11432-020-3245-7.
|
| [14] |
SUN Hanbo, ZHU Zhenhua, WANG Chenyu, et al. Gibbon: An efficient co-exploration framework of NN model and processing-in-memory architecture[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42(11): 4075–4089. doi: 10.1109/TCAD.2023.3262201.
|
| [15] |
KRIZHEVSKY A. Learning multiple layers of features from tiny images[EB/OL]. https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf, 2009.
|
| [16] |
DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]. The 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 248–255. doi: 10.1109/CVPR.2009.5206848.
|
| [17] |
XIAO Han, RASUL K, and VOLLGRAF R. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms[EB/OL]. arXiv preprint arXiv: 1708.07747, 2017. doi: 10.48550/arXiv.1708.07747.
|
| [18] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
| [19] |
LIU Hanxiao, SIMONYAN K, and YANG Yiming. DARTS: Differentiable architecture search[C]. The 7th International Conference on Learning Representations, New Orleans, USA, 2019.
|
| [20] |
ESSER S K, MCKINSTRY J L, BABLANI D, et al. Learned step size quantization[C]. The 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 2020.
|
| [21] |
ZHANG Yibei, ZHANG Qingtian, QIN Qi, et al. An RRAM retention prediction framework using a convolutional neural network based on relaxation behavior[J]. Neuromorphic Computing and Engineering, 2023, 3(1): 014011. doi: 10.1088/2634-4386/acb965.
|
| [22] |
ZHU Zhenhua, SUN Hanbo, XIE Tongxin, et al. MNSIM 2.0: A behavior-level modeling tool for processing-in-memory architectures[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42(11): 4112–4125. doi: 10.1109/TCAD.2023.3251696.
|
| [23] |
SHI Yuanming, ZHU Jingyang, JIANG Chunxiao, et al. Satellite edge artificial intelligence with large models: Architectures and technologies[J]. Science China Information Sciences, 2025, 68(7): 170302. doi: 10.1007/s11432-024-4425-y.
|