| Citation: | SONG Jiawen, WANG Qingsong. Multiscale Fractional Information Potential Field and Dynamic Gradient-Guided Energy Modeling for SAR and Multispectral Image Fusion[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250976 |
| [1] |
ZHANG Hao, XU Han, TIAN Xin, et al. Image fusion meets deep learning: A survey and perspective[J]. Information Fusion, 2021, 76: 323–336. doi: 10.1016/j.inffus.2021.06.008.
|
| [2] |
LIU Shuaijun, LIU Jia, TAN Xiaoyue, et al. A hybrid spatiotemporal fusion method for high spatial resolution imagery: Fusion of Gaofen-1 and Sentinel-2 over agricultural landscapes[J]. Journal of Remote Sensing, 2024, 4: 0159. doi: 10.34133/remotesensing.0159.
|
| [3] |
MEI Shaohui, LIAN Jiawei, WANG Xiaofei, et al. A comprehensive study on the robustness of deep learning-based image classification and object detection in remote sensing: Surveying and benchmarking[J]. Journal of Remote Sensing, 2024, 4: 0219. doi: 10.34133/remotesensing.0219.
|
| [4] |
YANG Songling, WANG Lihua, YUAN Yi, et al. Recognition of small water bodies under complex terrain based on SAR and optical image fusion algorithm[J]. Science of the Total Environment, 2024, 946: 174329. doi: 10.1016/j.scitotenv.2024.174329.
|
| [5] |
WU Wenfu, SHAO Zhenfeng, HUANG Xiao, et al. Quantifying the sensitivity of SAR and optical images three-level fusions in land cover classification to registration errors[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102868. doi: 10.1016/j.jag.2022.102868.
|
| [6] |
DONG Jun, FENG Jiewen, and TANG Xiaoyu. OptiSAR-Net: A cross-domain ship detection method for multisource remote sensing data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4709311. doi: 10.1109/TGRS.2024.3502447.
|
| [7] |
QUAN Yujun, ZHANG Rongrong, LI Jian, et al. Learning SAR-optical cross modal features for land cover classification[J]. Remote Sensing, 2024, 16(2): 431. doi: 10.3390/rs16020431.
|
| [8] |
HE Xiaoning, ZHANG Shuangcheng, XUE Bowei, et al. Cross-modal change detection flood extraction based on convolutional neural network[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 117: 103197. doi: 10.1016/j.jag.2023.103197.
|
| [9] |
YE Yuanxin, ZHANG Jiacheng, ZHOU Liang, et al. Optical and SAR image fusion based on complementary feature decomposition and visual saliency features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5205315. doi: 10.1109/TGRS.2024.3366519.
|
| [10] |
DENG Liangjian, VIVONE G, PAOLETTI M E, et al. Machine learning in pansharpening: A benchmark, from shallow to deep networks[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(3): 279–315. doi: 10.1109/MGRS.2022.3187652.
|
| [11] |
CHU Tianyong, TAN Yumin, LIU Qiang, et al. Novel fusion method for SAR and optical images based on non-subsampled shearlet transform[J]. International Journal of Remote Sensing, 2020, 41(12): 4590–4604. doi: 10.1080/01431161.2020.1723175.
|
| [12] |
ZHANG Wei and YU Le. SAR and Landsat ETM+ image fusion using variational model[C]. The 2010 International Conference on Computer and Communication Technologies in Agriculture Engineering, Chengdu, China, 2010: 205–207. doi: 10.1109/CCTAE.2010.5544210.
|
| [13] |
KONG Yingying, HONG Fang, LEUNG H, et al. A fusion method of optical image and SAR image based on dense-UGAN and Gram–Schmidt transformation[J]. Remote Sensing, 2021, 13(21): 4274. doi: 10.3390/rs13214274.
|
| [14] |
SHAO Zhenfeng, WU Wenfu, and GUO Songjing. IHS-GTF: A fusion method for optical and synthetic aperture radar data[J]. Remote Sensing, 2020, 12(17): 2796. doi: 10.3390/rs12172796.
|
| [15] |
LI Wenmei, WU Jiaqi, LIU Qing, et al. An effective multimodel fusion method for SAR and optical remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 5881–5892. doi: 10.1109/JSTARS.2023.3288143.
|
| [16] |
GONG Xunqiang, HOU Zhaoyang, WAN Yuting, et al. Multispectral and SAR image fusion for multiscale decomposition based on least squares optimization rolling guidance filtering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5401920. doi: 10.1109/TGRS.2024.3353868.
|
| [17] |
XU Li, YAN Qiong, XIA Yang, et al. Structure extraction from texture via relative total variation[J]. ACM Transactions on Graphics, 2012, 31(6): 139. doi: 10.1145/2366145.2366158.
|
| [18] |
LI Bo and XIE Wei. Adaptive fractional differential approach and its application to medical image enhancement[J]. Computers & Electrical Engineering, 2015, 45: 324–335. doi: 10.1016/j.compeleceng.2015.02.013.
|
| [19] |
YANG Qi, CHEN Dali, ZHAO Tiebiao, et al. Fractional calculus in image processing: A review[J]. Fractional Calculus and Applied Analysis, 2016, 19(5): 1222–1249. doi: 10.1515/fca-2016-0063.
|
| [20] |
ENßLIN T A. Information theory for fields[J]. Annalen der Physik, 2019, 531(3): 1800127. doi: 10.1002/andp.201800127.
|
| [21] |
LIU Yu, WANG Lei, CHENG Juan, et al. Multi-focus image fusion: A survey of the state of the art[J]. Information Fusion, 2020, 64: 71–91. doi: 10.1016/j.inffus.2020.06.013.
|
| [22] |
FIZA S and SAFINAZ S. Multi-focus image fusion using edge discriminative diffusion filter for satellite images[J]. Multimedia Tools and Applications, 2024, 83(25): 66087–66106. doi: 10.1007/s11042-024-18174-3.
|
| [23] |
MA Jiayi, YU Wei, LIANG Pengwei, et al. FusionGAN: A generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11–26. doi: 10.1016/j.inffus.2018.09.004.
|
| [24] |
ZHOU Zhiqiang, WANG Bo, LI Sun, et al. Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters[J]. Information Fusion, 2016, 30: 15–26. doi: 10.1016/j.inffus.2015.11.003.
|
| [25] |
MA Jinlei, ZHOU Zhiqiang, WANG Bo, et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 2017, 82: 8–17. doi: 10.1016/j.infrared.2017.02.005.
|
| [26] |
ZHANG Yu, LIU Yu, SUN Peng, et al. IFCNN: A general image fusion framework based on convolutional neural network[J]. Information Fusion, 2020, 54: 99–118. doi: 10.1016/j.inffus.2019.07.011.
|
| [27] |
MA Jiayi, TANG Linfeng, FAN Fan, et al. SwinFusion: Cross-domain long-range learning for general image fusion via Swin transformer[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(7): 1200–1217. doi: 10.1109/JAS.2022.105686.
|
| [28] |
ZHANG Yu, ZHANG Lijia, BAI Xiangzhi, et al. Infrared and visual image fusion through infrared feature extraction and visual information preservation[J]. Infrared Physics & Technology, 2017, 83: 227–237. doi: 10.1016/j.infrared.2017.05.007.
|
| [29] |
HUANG Wei, LIU Yanyan, SUN Le, et al. A novel dual-branch pansharpening network with high-frequency component enhancement and multi-scale skip connection[J]. Remote Sensing, 2025, 17(5): 776. doi: 10.3390/rs17050776.
|
| [30] |
VIVONE G, ALPARONE L, CHANUSSOT J, et al. A critical comparison among pansharpening algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2565–2586. doi: 10.1109/TGRS.2014.2361734.
|
| [31] |
LONCAN L, DE ALMEIDA L B, BIOUCAS-DIAS J M, et al. Hyperspectral pansharpening: A review[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(3): 27–46. doi: 10.1109/MGRS.2015.2440094.
|
| [32] |
PLUIM J P W, MAINTZ J B A, and VIERGEVER M A. Mutual-information-based registration of medical images: A survey[J]. IEEE Transactions on Medical Imaging, 2003, 22(8): 986–1004. doi: 10.1109/TMI.2003.815867.
|
| [33] |
LIU Danfeng, WANG Enyuan, WANG Liguo, et al. Pansharpening based on multimodal texture correction and adaptive edge detail fusion[J]. Remote Sensing, 2024, 16(16): 2941. doi: 10.3390/rs16162941.
|
| [34] |
WEN Xincan, MA Hongbing, and LI Liangliang. A three-branch pansharpening network based on spatial and frequency domain interaction[J]. Remote Sensing, 2025, 17(1): 13. doi: 10.3390/rs17010013.
|
| [35] |
LI Xue, ZHANG Guo, CUI Hao, et al. MCANet: A joint semantic segmentation framework of optical and SAR images for land use classification[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 106: 102638. doi: 10.1016/j.jag.2021.102638.
|
| [36] |
LI Jinjin, ZHANG Jiacheng, YANG Chao, et al. Comparative analysis of pixel-level fusion algorithms and a new high-resolution dataset for SAR and optical image fusion[J]. Remote Sensing, 2023, 15(23): 5514. doi: 10.3390/rs15235514.
|