| Citation: | GAO Ying, ZHANG Yucheng, WANG Wenyao, SU Xuanyi, SONG Zhen. Progress in Modeling Cardiac Myocyte Calcium Cycling and Investigating Arrhythmia Mechanisms: A Study Focused on the Ryanodine Receptor[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250957 |
| [1] |
STEINBERG C, ROSTON T M, VAN DER WERF C, et al. RYR2-ryanodinopathies: From calcium overload to calcium deficiency[J]. Europace, 2023, 25(6): euad156. doi: 10.1093/europace/euad156.
|
| [2] |
BADDELEY D, JAYASINGHE I, LAM L, et al. Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(52): 22275–22280. doi: 10.1073/pnas.0908971106.
|
| [3] |
柏树令, 应大君, 丁文龙, 等. 系统解剖学[M]. 8版. 北京: 人民卫生出版社, 2013: 186–203.
BAI Shuling, YING Dajun, DING Wenlong, et al. Systematic Anatomy[M]. 8th ed. Beijing: People’s Medical Publishing House, 2013: 186–203.
|
| [4] |
AKSENTIJEVIC D, SEDEJ S, FAUCONNIER J, et al. Mechano-energetic uncoupling in heart failure[J]. Nature Reviews Cardiology, 2025, 22(10): 773–797. doi: 10.1038/s41569-025-01167-6.
|
| [5] |
MANOJ P, KIM J A, KIM S, et al. Sinus node dysfunction: Current understanding and future directions[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2023, 324(3): H259–H278. doi: 10.1152/ajpheart.00618.2022.
|
| [6] |
GUO Shuang, HU Yingqing, LING Li, et al. Molecular mechanisms and intervention approaches of heart failure (review)[J]. International Journal of Molecular Medicine, 2025, 56(2): 125. doi: 10.3892/ijmm.2025.5566.
|
| [7] |
MIOTTO M C, REIKEN S, WRONSKA A, et al. Structural basis for ryanodine receptor type 2 leak in heart failure and arrhythmogenic disorders[J]. Nature Communications, 2024, 15(1): 8080. doi: 10.1038/s41467-024-51791-y.
|
| [8] |
PAUDEL R, JAFRI M S, and ULLAH A. Gain-of-function and loss-of-function mutations in the RyR2-expressing gene are responsible for the CPVT1-related arrhythmogenic activities in the heart[J]. Current Issues in Molecular Biology, 2024, 46(11): 12886–12910. doi: 10.3390/cimb46110767.
|
| [9] |
KOVALEV I A, SOLOVIOV V M, BEREZNITSKAYA V V, et al. Calcium release deficiency syndrome, a rare variant of catecholaminergic polymorphic ventricular tachycardia[J]. Pediatria. Journal Named After G. N. Speransky, 2023, 102(6): 195–201. doi: 10.24110/0031-403X-2023-102-6-195-201.
|
| [10] |
PORRETTA A P, PRUVOT E, and BHUIYAN Z A. Calcium release deficiency syndrome (CRDS): Rethinking “atypical” catecholaminergic polymorphic ventricular tachycardia[J]. Cardiogenetics, 2024, 14(4): 211–220. doi: 10.3390/cardiogenetics14040017.
|
| [11] |
ZHANG Yadan, SEIDEL M, RABESAHALA DE MERITENS C, et al. Disparate molecular mechanisms in cardiac ryanodine receptor channelopathies[J]. Frontiers in Molecular Biosciences, 2024, 11: 1505698. doi: 10.3389/fmolb.2024.1505698.
|
| [12] |
GONANO L A, KINNS A M, BERGAN-DAHL A, et al. Interplay between ryanodine receptor arrangement and function: Implications for (patho)physiological control of calcium release[J]. Circulation Research, 2025, 137(6): 902–923. doi: 10.1161/CIRCRESAHA.125.325387.
|
| [13] |
QU Zhilin, YAN Dasen, and SONG Zhen. Modeling calcium cycling in the heart: Progress, pitfalls, and challenges[J]. Biomolecules, 2022, 12(11): 1686. doi: 10.3390/biom12111686.
|
| [14] |
PENG Wei, SHEN Huaizong, WU Jianping, et al. Structural basis for the gating mechanism of the type 2 ryanodine receptor RyR2[J]. Science, 2016, 354(6310): aah5324. doi: 10.1126/science.aah5324.
|
| [15] |
LIN Lianyun, WANG Changshi, WANG Wenlan, et al. Cryo-EM structures of ryanodine receptors and diamide insecticides reveal the mechanisms of selectivity and resistance[J]. Nature Communications, 2024, 15(1): 9056. doi: 10.1038/s41467-024-53490-0.
|
| [16] |
DO T Q and KNOLLMANN B C. Inhibitors of intracellular RyR2 calcium release channels as therapeutic agents in arrhythmogenic heart diseases[J]. Annual Review of Pharmacology and Toxicology, 2025, 65: 443–463. doi: 10.1146/annurev-pharmtox-061724-080739.
|
| [17] |
BORKOĽ, BAUEROVÁ-HLINKOVÁ V, HOSTINOVÁ E, et al. Structural insights into the human RyR2 N-terminal region involved in cardiac arrhythmias[J]. Acta Crystallographica Section D Biological Crystallography, 2014, 70(11): 2897–2912. doi: 10.1107/S1399004714020343.
|
| [18] |
LAU K and VAN PETEGEM F. Crystal structures of wild type and disease mutant forms of the ryanodine receptor SPRY2 domain[J]. Nature Communications, 2014, 5: 5397. doi: 10.1038/ncomms6397.
|
| [19] |
MEISSNER G. The structural basis of ryanodine receptor ion channel function[J]. Journal of General Physiology, 2017, 149(12): 1065–1089. doi: 10.1085/jgp.201711878.
|
| [20] |
LI Pin and CHEN S R W. Molecular basis of Ca2+ activation of the mouse cardiac Ca2+ release channel (ryanodine receptor)[J]. The Journal of General Physiology, 2001, 118(1): 33–44. doi: 10.1085/jgp.118.1.33.
|
| [21] |
WANG Ruiwu, BOLSTAD J, KONG Huihui, et al. The predicted TM10 transmembrane sequence of the cardiac Ca2+ release channel (ryanodine receptor) is crucial for channel activation and gating[J]. Journal of Biological Chemistry, 2004, 279(5): 3635–3642. doi: 10.1074/jbc.M311367200.
|
| [22] |
CHI Ximin, GONG Deshun, REN Kang, et al. Molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(51): 25575–25582. doi: 10.1073/pnas.1914451116.
|
| [23] |
XU Le and MEISSNER G. Regulation of cardiac muscle Ca2+ release channel by sarcoplasmic reticulum lumenal Ca2+[J]. Biophysical Journal, 1998, 75(5): 2302–2312. doi: 10.1016/S0006-3495(98)77674-X.
|
| [24] |
CHING L L, WILLIAMS A J, and SITSAPESAN R. Evidence for Ca2+ activation and inactivation sites on the luminal side of the cardiac ryanodine receptor complex[J]. Circulation Research, 2000, 87(3): 201–206. doi: 10.1161/01.RES.87.3.201.
|
| [25] |
JIANG Dawei, CHEN Wenqian, WANG Ruiwu, et al. Loss of luminal Ca2+ activation in the cardiac ryanodine receptor is associated with ventricular fibrillation and sudden death[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(46): 18309–18314. doi: 10.1073/pnas.0706573104.
|
| [26] |
LAVER D R and HONEN B N. Luminal Mg2+, a key factor controlling RYR2-mediated Ca2+ release: Cytoplasmic and luminal regulation modeled in a tetrameric channel[J]. The Journal of General Physiology, 2008, 132(4): 429–446. doi: 10.1085/jgp.200810001.
|
| [27] |
CHEN Wenqian, WANG Ruiwu, CHEN Biyi, et al. The ryanodine receptor store-sensing gate controls Ca2+ waves and Ca2+-triggered arrhythmias[J]. Nature Medicine, 2014, 20(2): 184–192. doi: 10.1038/nm.3440.
|
| [28] |
LAVER D R. Regulation of the RyR channel gating by Ca2+ and Mg2+[J]. Biophysical Reviews, 2018, 10(4): 1087–1095. doi: 10.1007/s12551-018-0433-4.
|
| [29] |
GYÖRKE S and FILL M. Ryanodine receptor adaptation: Control mechanism of Ca2+-induced Ca2+ release in heart[J]. Science, 1993, 260(5109): 807–809. doi: 10.1126/science.8387229.
|
| [30] |
VALDIVIA H H, KAPLAN J H, ELLIS-DAVIES G C R, et al. Rapid adaptation of cardiac ryanodine receptors: Modulation by Mg2+ and phosphorylation[J]. Science, 1995, 267(5206): 1997–2000. doi: 10.1126/science.7701323.
|
| [31] |
BERS D M. Excitation-Contraction Coupling and Cardiac Contractile Force[M]. 2nd ed. Dordrecht: Springer, 2001: 198–205. doi: 10.1007/978-94-010-0658-3.
|
| [32] |
SCHIEFER A, MEISSNER G, and ISENBERG G. Ca2+ activation and Ca2+ inactivation of canine reconstituted cardiac sarcoplasmic reticulum Ca2+-release channels[J]. The Journal of Physiology, 1995, 489(2): 337–348. doi: 10.1113/jphysiol.1995.sp021055.
|
| [33] |
FILL M, ZAHRADNÍKOVÁ A, VILLALBA-GALEA C A, et al. Ryanodine receptor adaptation[J]. The Journal of General Physiology, 2000, 116(6): 873–882. doi: 10.1085/jgp.116.6.873.
|
| [34] |
DRIES E, GILBERT G, RODERICK H L, et al. The ryanodine receptor microdomain in cardiomyocytes[J]. Cell Calcium, 2023, 114: 102769. doi: 10.1016/j.ceca.2023.102769.
|
| [35] |
FRANZINI-ARMSTRONG C, PROTASI F, and RAMESH V. Shape, size, and distribution of Ca2+ release units and couplons in skeletal and cardiac muscles[J]. Biophysical Journal, 1999, 77(3): 1528–1539. doi: 10.1016/S0006-3495(99)77000-1.
|
| [36] |
MALTSEV A V, VENTURA SUBIRACHS V, MONFREDI O, et al. Structure-function relationship of the ryanodine receptor cluster network in sinoatrial node cells[J]. Cells, 2024, 13(22): 1885. doi: 10.3390/cells13221885.
|
| [37] |
NI Haibo, ZHANG Xianwei, WU Yixuan, et al. 3D spatial modeling of sinoatrial node cells reveals a critical role of subcellular ryanodine receptor distribution in pacemaker automaticity[J]. Biophysical Journal, 2023, 122(3): 381a–382a. doi: 10.1016/j.bpj.2022.11.2093.
|
| [38] |
GAO Zhongxue, LI Tiantian, JIANG Hanyu, et al. Calcium oscillation on homogeneous and heterogeneous networks of ryanodine receptor[J]. Physical Review E, 2023, 107(2): 024402. doi: 10.1103/PhysRevE.107.024402.
|
| [39] |
SATO D, GHAYOUMI B, FASOLI A, et al. Positive feedback between RyR phosphorylation and Ca2+ leak promotes heterogeneous Ca2+ release[J]. Biophysical Journal, 2025, 124(5): 717–721. doi: 10.1016/j.bpj.2025.01.023.
|
| [40] |
LAASMAA M, BRANOVETS J, STOLOVA J, et al. Cardiomyocytes from female compared to male mice have larger ryanodine receptor clusters and higher calcium spark frequency[J]. The Journal of Physiology, 2023, 601(18): 4033–4052. doi: 10.1113/JP284515.
|
| [41] |
VERON G, MALTSEV V A, STERN M D, et al. Elementary intracellular Ca signals approximated as a transition of release channel system from a metastable state[J]. Journal of Applied Physics, 2023, 134(12): 124701. doi: 10.1063/5.0151255.
|
| [42] |
CHENG Heping and LEDERER W J. Calcium sparks[J]. Physiological Reviews, 2008, 88(4): 1491–1545. doi: 10.1152/physrev.00030.2007.
|
| [43] |
NAYAK A R, RANGUBPIT W, WILL A H, et al. Interplay between Mg2+ and Ca2+ at multiple sites of the ryanodine receptor[J]. Nature Communications, 2024, 15(1): 4115. doi: 10.1038/s41467-024-48292-3.
|
| [44] |
REBBECK R T, SVENSSON B, ZHANG Jingyan, et al. Kinetics and mapping of Ca-driven calmodulin conformations on skeletal and cardiac muscle ryanodine receptors[J]. Nature Communications, 2024, 15(1): 5120. doi: 10.1038/s41467-024-48951-5.
|
| [45] |
MARABELLI C, SANTIAGO D J, and PRIORI S G. The Yin and Yang of heartbeats: Magnesium–calcium antagonism is essential for cardiac excitation–contraction coupling[J]. Cells, 2025, 14(16): 1280. doi: 10.3390/cells14161280.
|
| [46] |
LUO C H and RUDY Y. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes[J]. Circulation Research, 1994, 74(6): 1071–1096. doi: 10.1161/01.RES.74.6.1071.
|
| [47] |
LIVSHITZ L M and RUDY Y. Regulation of Ca2+ and electrical alternans in cardiac myocytes: Role of CAMKII and repolarizing currents[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2007, 292(6): H2854–H2866. doi: 10.1152/ajpheart.01347.2006.
|
| [48] |
O’HARA T, VIRÁG L, VARRÓ A, et al. Simulation of the undiseased human cardiac ventricular action potential: Model formulation and experimental validation[J]. PLoS Computational Biology, 2011, 7(5): e1002061. doi: 10.1371/journal.pcbi.1002061.
|
| [49] |
CHUDIN E, GOLDHABER J, GARFINKEL A, et al. Intracellular Ca2+ dynamics and the stability of ventricular tachycardia[J]. Biophysical Journal, 1999, 77(6): 2930–2941. doi: 10.1016/S0006-3495(99)77126-2.
|
| [50] |
SHIFERAW Y, WATANABE M A, GARFINKEL A, et al. Model of intracellular calcium cycling in ventricular myocytes[J]. Biophysical Journal, 2003, 85(6): 3666–3686. doi: 10.1016/S0006-3495(03)74784-5.
|
| [51] |
CANNELL M B, KONG C H T, IMTIAZ M S, et al. Control of sarcoplasmic reticulum Ca2+ release by stochastic RyR gating within a 3D model of the cardiac dyad and importance of induction decay for CICR termination[J]. Biophysical Journal, 2013, 104(10): 2149–2159. doi: 10.1016/j.bpj.2013.03.058.
|
| [52] |
HINCH R, GREENSTEIN J L, TANSKANEN A J, et al. A simplified local control model of calcium-induced calcium release in cardiac ventricular myocytes[J]. Biophysical Journal, 2004, 87(6): 3723–3736. doi: 10.1529/biophysj.104.049973.
|
| [53] |
GREENE D and SHIFERAW Y. Mechanistic link between CaM-RyR2 interactions and the genesis of cardiac arrhythmia[J]. Biophysical Journal, 2021, 120(8): 1469–1482. doi: 10.1016/j.bpj.2021.02.016.
|
| [54] |
KEIZER J and LEVINE L. Ryanodine receptor adaptation and Ca2+-induced Ca2+ release-dependent Ca2+ oscillations[J]. Biophysical Journal, 1996, 71(6): 3477–3487. doi: 10.1016/S0006-3495(96)79543-7.
|
| [55] |
STERN M D, SONG Longsheng, CHENG Heping, et al. Local control models of cardiac excitation–contraction coupling: A possible role for allosteric interactions between ryanodine receptors[J]. The Journal of General Physiology, 1999, 113(3): 469–489. doi: 10.1085/jgp.113.3.469.
|
| [56] |
RESTREPO J G, WEISS J N, and KARMA A. Calsequestrin-mediated mechanism for cellular calcium transient alternans[J]. Biophysical Journal, 2008, 95(8): 3767–3789. doi: 10.1529/biophysj.108.130419.
|
| [57] |
ZAHRADNÍKOVÁ A, PAVELKOVÁ J, SABO M, et al. Structure-based mechanism of RyR channel operation by calcium and magnesium ions[J]. PLOS Computational Biology, 2025, 21(4): e1012950. doi: 10.1371/journal.pcbi.1012950.
|
| [58] |
WANG Kai, TU Yuhai, RAPPEL W J, et al. Excitation-contraction coupling gain and cooperativity of the cardiac ryanodine receptor: A modeling approach[J]. Biophysical Journal, 2005, 89(5): 3017–3025. doi: 10.1529/biophysj.105.058958.
|
| [59] |
GREENE D, LUCHKO T, and SHIFERAW Y. The role of subunit cooperativity on ryanodine receptor 2 calcium signaling[J]. Biophysical Journal, 2023, 122(1): 215–229. doi: 10.1016/j.bpj.2022.11.008.
|
| [60] |
GREENE D, BARTON M, LUCHKO T, et al. Molecular dynamics simulations of the cardiac ryanodine receptor type 2 (RyR2) gating mechanism[J]. The Journal of Physical Chemistry B, 2022, 126(47): 9790–9809. doi: 10.1021/acs.jpcb.2c03031.
|
| [61] |
DAL CORTIVO G, BARRACCHIA C G, MARINO V, et al. Alterations in calmodulin-cardiac ryanodine receptor molecular recognition in congenital arrhythmias[J]. Cellular and Molecular Life Sciences, 2022, 79(2): 127. doi: 10.1007/s00018-022-04165-w.
|
| [62] |
GUO Tao, GILLESPIE D, and FILL M. Ryanodine receptor current amplitude controls Ca2+ sparks in cardiac muscle[J]. Circulation Research, 2012, 111(1): 28–36. doi: 10.1161/CIRCRESAHA.112.265652.
|
| [63] |
WESCOTT A P, JAFRI M S, LEDERER W J, et al. Ryanodine receptor sensitivity governs the stability and synchrony of local calcium release during cardiac excitation-contraction coupling[J]. Journal of Molecular and Cellular Cardiology, 2016, 92: 82–92. doi: 10.1016/j.yjmcc.2016.01.024.
|
| [64] |
WU Xu and BERS D M. Sarcoplasmic reticulum and nuclear envelope are one highly interconnected Ca2+ store throughout cardiac myocyte[J]. Circulation Research, 2006, 99(3): 283–291. doi: 10.1161/01.RES.0000233386.02708.72.
|
| [65] |
ZIMA A V, PICHT E, BERS D M, et al. Termination of cardiac Ca2+ sparks: Role of intra-SR [Ca2+], release flux, and intra-SR Ca2+ diffusion[J]. Circulation Research, 2008, 103(8): E105–E115. doi: 10.1161/CIRCRESAHA.107.183236.
|
| [66] |
ASAKURA K, CHA C Y, YAMAOKA H, et al. EAD and DAD mechanisms analyzed by developing a new human ventricular cell model[J]. Progress in Biophysics and Molecular Biology, 2014, 116(1): 11–24. doi: 10.1016/j.pbiomolbio.2014.08.008.
|
| [67] |
MUKHERJEE S, THOMAS N L, and WILLIAMS A J. A mechanistic description of gating of the human cardiac ryanodine receptor in a regulated minimal environment[J]. Journal of General Physiology, 2012, 140(2): 139–158. doi: 10.1085/jgp.201110706.
|
| [68] |
SHANNON T R, WANG Fei, PUGLISI J, et al. A mathematical treatment of integrated Ca dynamics within the ventricular Myocyte[J]. Biophysical Journal, 2004, 87(5): 3351–3371. doi: 10.1529/biophysj.104.047449.
|
| [69] |
SOBIE E A, DILLY K W, DOS SANTOS CRUZ J, et al. Termination of cardiac Ca2+ sparks: An investigative mathematical model of calcium-induced calcium release[J]. Biophysical Journal, 2002, 83(1): 59–78. doi: 10.1016/S0006-3495(02)75149-7.
|
| [70] |
MALTSEV V A and LAKATTA E G. Numerical models based on a minimal set of sarcolemmal electrogenic proteins and an intracellular Ca2+ clock generate robust, flexible, and energy-efficient cardiac pacemaking[J]. Journal of Molecular and Cellular Cardiology, 2013, 59: 181–195. doi: 10.1016/j.yjmcc.2013.03.004.
|
| [71] |
GRANDI E, PANDIT S V, VOIGT N, et al. Human atrial action potential and Ca2+ model: Sinus rhythm and chronic atrial fibrillation[J]. Circulation Research, 2011, 109(9): 1055–1066. doi: 10.1161/CIRCRESAHA.111.253955.
|
| [72] |
ALVAREZ-LACALLE E, CANTALAPIEDRA I R, PEÑARANDA A, et al. Dependency of calcium alternans on ryanodine receptor refractoriness[J]. PLoS One, 2013, 8(2): e55042. doi: 10.1371/journal.pone.0055042.
|
| [73] |
TEN TUSSCHER K H W J and PANFILOV A V. Alternans and spiral breakup in a human ventricular tissue model[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2006, 291(3): H1088–H1100. doi: 10.1152/ajpheart.00109.2006.
|
| [74] |
RICE J J, SALEET JAFRI M, and WINSLOW R L. Modeling gain and gradedness of Ca2+ release in the functional unit of the cardiac diadic space[J]. Biophysical Journal, 1999, 77(4): 1871–1884. doi: 10.1016/S0006-3495(99)77030-X.
|
| [75] |
NIVALA M, DE LANGE E, ROVETTI R, et al. Computational modeling and numerical methods for spatiotemporal calcium cycling in ventricular myocytes[J]. Frontiers in Physiology, 2012, 3: 114. doi: 10.3389/fphys.2012.00114.
|
| [76] |
GURUNG A and GUAN Qingguang. Hybrid PDE-deep neural network model for calcium dynamics in neurons[J]. Journal of Machine Learning for Modeling and Computing, 2025, 6(1): 1–21. doi: 10.1615/JMachLearnModelComput.2024055000.
|
| [77] |
COLMAN M A. RyR cooperativity and mobile buffers: Functional clues to the resolution of the cardiac calcium wave problem?[J]. The Journal of Physiology, 2024, 602(24): 6637–6638. doi: 10.1113/JP287762.
|
| [78] |
MONOD J, WYMAN J, and CHANGEUX J P. On the nature of allosteric transitions: A plausible model[J]. Journal of Molecular Biology, 1965, 12(1): 88–118. doi: 10.1016/S0022-2836(65)80285-6.
|
| [79] |
ZHONG Mingwang and KARMA A. Role of ryanodine receptor cooperativity in Ca2+-wave-mediated triggered activity in cardiomyocytes[J]. The Journal of Physiology, 2024, 602(24): 6745–6787. doi: 10.1113/JP286145.
|
| [80] |
VIDAL-LIMON A, AGUILAR-TOALÁ J E, and LICEAGA A M. Integration of molecular docking analysis and molecular dynamics simulations for studying food proteins and bioactive peptides[J]. Journal of Agricultural and Food Chemistry, 2022, 70(4): 934–943. doi: 10.1021/acs.jafc.1c06110.
|
| [81] |
NEUBERGEROVÁ M and PLESKOT R. Plant protein–lipid interfaces studied by molecular dynamics simulations[J]. Journal of Experimental Botany, 2024, 75(17): 5237–5250. doi: 10.1093/jxb/erae228.
|
| [82] |
ZHOU Chaogang, LI Jinyue, WANG Shuhuan, et al. Development of molecular dynamics and research progress in the study of slag[J]. Materials, 2023, 16(15): 5373. doi: 10.3390/ma16155373.
|
| [83] |
MOSKVIN A S. The electron-conformational model of ryanodine receptors of the heart cell[J]. Technical Physics, 2018, 63(9): 1277–1287. doi: 10.1134/S1063784218090128.
|
| [84] |
DI FRANCESCO D and NOBLE D. A model of cardiac electrical activity incorporating ionic pumps and concentration changes[J]. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 1985, 307(1133): 353–398. doi: 10.1098/rstb.1985.0001.
|
| [85] |
STERN M D. Theory of excitation-contraction coupling in cardiac muscle[J]. Biophysical Journal, 1992, 63(2): 497–517. doi: 10.1016/S0006-3495(92)81615-6.
|
| [86] |
GREENSTEIN J L and WINSLOW R L. An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release[J]. Biophysical Journal, 2002, 83(6): 2918–2945. doi: 10.1016/S0006-3495(02)75301-0.
|
| [87] |
HAKE J, EDWARDS A G, YU Zeyun, et al. Modelling cardiac calcium sparks in a three-dimensional reconstruction of a calcium release unit[J]. The Journal of Physiology, 2012, 590(18): 4403–4422. doi: 10.1113/jphysiol.2012.227926.
|
| [88] |
NIVALA M, KO C Y, NIVALA M, et al. Criticality in intracellular calcium signaling in cardiac myocytes[J]. Biophysical Journal, 2012, 102(11): 2433–2442. doi: 10.1016/j.bpj.2012.05.001.
|
| [89] |
SONG Zhen, LIU M B, and QU Zhilin. Transverse tubular network structures in the genesis of intracellular calcium alternans and triggered activity in cardiac cells[J]. Journal of Molecular and Cellular Cardiology, 2018, 114: 288–299. doi: 10.1016/j.yjmcc.2017.12.003.
|
| [90] |
DONALD L and LAKATTA E G. What makes the sinoatrial node tick? A question not for the faint of heart[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378(1879): 20220180. doi: 10.1098/rstb.2022.0180.
|
| [91] |
MALTSEV V A and LAKATTA E G. The funny current in the context of the coupled-clock pacemaker cell system[J]. Heart Rhythm, 2012, 9(2): 302–307. doi: 10.1016/j.hrthm.2011.09.022.
|
| [92] |
MALTSEV V A and LAKATTA E G. Synergism of coupled subsarcolemmal Ca2+ clocks and sarcolemmal voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2009, 296(3): H594–H615. doi: 10.1152/ajpheart.01118.2008.
|
| [93] |
SEVERI S, FANTINI M, CHARAWI L A, et al. An updated computational model of rabbit sinoatrial action potential to investigate the mechanisms of heart rate modulation[J]. The Journal of Physiology, 2012, 590(18): 4483–4499. doi: 10.1113/jphysiol.2012.229435.
|
| [94] |
STERN M D, MALTSEVA L A, JUHASZOVA M, et al. Hierarchical clustering of ryanodine receptors enables emergence of a calcium clock in sinoatrial node cells[J]. Journal of General Physiology, 2014, 143(5): 577–604. doi: 10.1085/jgp.201311123.
|
| [95] |
HEIJMAN J, ERFANIAN ABDOUST P, VOIGT N, et al. Computational models of atrial cellular electrophysiology and calcium handling, and their role in atrial fibrillation[J]. The Journal of Physiology, 2016, 594(3): 537–553. doi: 10.1113/JP271404.
|
| [96] |
SUTANTO H, VAN SLOUN B, SCHÖNLEITNER P, et al. The subcellular distribution of ryanodine receptors and L-type Ca2+ channels modulates Ca2+-transient properties and spontaneous Ca2+-release events in atrial cardiomyocytes[J]. Frontiers in Physiology, 2018, 9: 1108. doi: 10.3389/fphys.2018.01108.
|
| [97] |
VAGOS M R, AREVALO H, HEIJMAN J, et al. A novel computational model of the rabbit atrial cardiomyocyte with spatial calcium dynamics[J]. Frontiers in Physiology, 2020, 11: 556156. doi: 10.3389/fphys.2020.556156.
|
| [98] |
ZHANG Xianwei, WU Yixuan, SMITH C E R, et al. Enhanced Ca2+-driven arrhythmogenic events in female patients with atrial fibrillation: Insights from computational modeling[J]. JACC: Clinical Electrophysiology, 2024, 10(11): 2371–2391. doi: 10.1016/j.jacep.2024.07.020.
|
| [99] |
ZHANG Xianwei, NI Haibo, MOROTTI S, et al. Mechanisms of spontaneous Ca2+ release-mediated arrhythmia in a novel 3D human atrial myocyte model: I. Transverse-axial tubule variation[J]. The Journal of Physiology, 2023, 601(13): 2655–2683. doi: 10.1113/JP283363.
|
| [100] |
ZHANG Xianwei, SMITH C E R, MOROTTI S, et al. Mechanisms of spontaneous Ca2+ release-mediated arrhythmia in a novel 3D human atrial myocyte model: II. Ca2+-handling protein variation[J]. The Journal of Physiology, 2023, 601(13): 2685–2710. doi: 10.1113/JP283602.
|
| [101] |
HANCOX J C, YUILL K H, MITCHESON J S, et al. Progress and gaps in understanding the electrophysiological properties of morphologically normal cells from the cardiac atrioventricular node[J]. International Journal of Bifurcation and Chaos, 2003, 13(12): 3675–3691. doi: 10.1142/S021812740300879X.
|
| [102] |
LIU Yaning, ZENG Wanzhen, DELMAR M, et al. Ionic mechanisms of electronic inhibition and concealed conduction in rabbit atrioventricular nodal myocytes[J]. Circulation, 1993, 88(4): 1634–1646. doi: 10.1161/01.CIR.88.4.1634.
|
| [103] |
JACKOWSKA-ZDUNIAK B and FORYŚ U. Mathematical model of the atrioventricular nodal double response tachycardia and double-fire pathology[J]. Mathematical Biosciences & Engineering, 2016, 13(6): 1143–1158. doi: 10.3934/mbe.2016035.
|
| [104] |
INADA S, HANCOX J C, ZHANG Henggui, et al. One-dimensional mathematical model of the atrioventricular node including atrio-nodal, nodal, and nodal-his cells[J]. Biophysical Journal, 2009, 97(8): 2117–2127. doi: 10.1016/j.bpj.2009.06.056.
|
| [105] |
CHENG Hongwei, LI Jue, JAMES A F, et al. Characterization and influence of cardiac background sodium current in the atrioventricular node[J]. Journal of Molecular and Cellular Cardiology, 2016, 97: 114–124. doi: 10.1016/j.yjmcc.2016.04.014.
|
| [106] |
TERRAR D A. Timing mechanisms to control heart rhythm and initiate arrhythmias: Roles for intracellular organelles, signalling pathways and subsarcolemmal Ca2+[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378(1879): 20220170. doi: 10.1098/rstb.2022.0170.
|
| [107] |
SHI Shuqing, ZHANG Xiaohan, LV Jiayu, et al. Multi-omics reveals mechanism of Qi-Po-Sheng-Mai granule in reducing atrial fibrillation susceptibility in aged rats[J]. Chinese Medicine, 2025, 20(1): 118. doi: 10.1186/s13020-025-01154-6.
|
| [108] |
HE B J, BOYDEN P, and SCHEINMAN M. Ventricular arrhythmias involving the His-Purkinje system in the structurally abnormal heart[J]. Pacing and Clinical Electrophysiology, 2018, 41(9): 1051–1059. doi: 10.1111/pace.13465.
|
| [109] |
LIMBU B, SHAH K, WEINBERG S H, et al. Role of cytosolic calcium diffusion in murine cardiac Purkinje cells[J]. Clinical Medicine Insights: Cardiology, 2016, 10(S1): 17–26. doi: 10.4137/CMC.S39705.
|
| [110] |
VAIDYANATHAN R, O’CONNELL R P, DEO M, et al. The ionic bases of the action potential in isolated mouse cardiac Purkinje cell[J]. Heart Rhythm, 2013, 10(1): 80–87. doi: 10.1016/j.hrthm.2012.10.002.
|
| [111] |
LI Pan and RUDY Y. A model of canine Purkinje cell electrophysiology and Ca2+ cycling: Rate dependence, triggered activity, and comparison to ventricular myocytes[J]. Circulation Research, 2011, 109(1): 71–79. doi: 10.1161/CIRCRESAHA.111.246512.
|
| [112] |
SHAH C, JIWANI S, LIMBU B, et al. Delayed afterdepolarization-induced triggered activity in cardiac purkinje cells mediated through cytosolic calcium diffusion waves[J]. Physiological Reports, 2019, 7(24): e14296. doi: 10.14814/phy2.14296.
|
| [113] |
SHOU Jian and HUO Yunlong. Changes of calcium cycling in HFrEF and HFpEF[J]. Mechanobiology in Medicine, 2023, 1(1): 100001. doi: 10.1016/j.mbm.2023.100001.
|
| [114] |
NEGRONI J. A cardiac muscle model relating sarcomere dynamics to calcium kinetics[J]. Journal of Molecular and Cellular Cardiology, 1996, 28(5): 915–929. doi: 10.1006/jmcc.1996.0086.
|
| [115] |
RICE J J, WINSLOW R L, and HUNTER W C. Comparison of putative cooperative mechanisms in cardiac muscle: Length dependence and dynamic responses[J]. American Journal of Physiology-Heart and Circulatory Physiology, 1999, 276(5): H1734–H1754. doi: 10.1152/ajpheart.1999.276.5.H1734.
|
| [116] |
JI Y C, GRAY R A, and FENTON F H. Implementation of contraction to electrophysiological ventricular myocyte models, and their quantitative characterization via post-extrasystolic potentiation[J]. PLoS One, 2015, 10(8): e0135699. doi: 10.1371/journal.pone.0135699.
|
| [117] |
GYÖRKE S, BELEVYCH A E, LIU Bin, et al. The role of luminal Ca regulation in Ca signaling refractoriness and cardiac arrhythmogenesis[J]. Journal of General Physiology, 2017, 149(9): 877–888. doi: 10.1085/jgp.201711808.
|
| [118] |
KAPLAN A D, BOYMAN L, WARD C W, et al. Ryanodine receptor stabilization therapy suppresses Ca2+-based arrhythmias in a novel model of metabolic HFpEF[J]. Journal of Molecular and Cellular Cardiology, 2024, 195: 68–72. doi: 10.1016/j.yjmcc.2024.07.006.
|
| [119] |
LI Xiaoqian, WU Meiqiong, FANG Lihua, et al. Cardiac FGF23 increases intracellular calcium in atrial myocytes and the susceptibility to atrial fibrillation decreased in FGF23f/fMYHCCre/+ mice[J]. Journal of Cellular and Molecular Medicine, 2025, 29(6): e70517. doi: 10.1111/jcmm.70517.
|
| [120] |
FOWLER E D and ZISSIMOPOULOS S. Molecular, subcellular, and arrhythmogenic mechanisms in genetic RyR2 disease[J]. Biomolecules, 2022, 12(8): 1030. doi: 10.3390/biom12081030.
|
| [121] |
SONG Zhen, QU Zhilin, and KARMA A. Stochastic initiation and termination of calcium-mediated triggered activity in cardiac myocytes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(3): E270–E279. doi: 10.1073/pnas.1614051114.
|
| [122] |
FANG Lihua, CHEN Qian, CHENG Xianlu, et al. Calcium-mediated DAD in membrane potentials and triggered activity in atrial myocytes of ETV1f/fMyHCCre/+ mice[J]. Journal of Cellular and Molecular Medicine, 2024, 28(16): e70005. doi: 10.1111/jcmm.70005.
|
| [123] |
VENETUCCI L A, TRAFFORD A W, and EISNER D A. Increasing ryanodine receptor open probability alone does not produce arrhythmogenic calcium waves: Threshold sarcoplasmic reticulum calcium content is required[J]. Circulation Research, 2007, 100(1): 105–111. doi: 10.1161/01.RES.0000252828.17939.00.
|
| [124] |
CONNELL P, WORD T A, and WEHRENS X H T. Targeting pathological leak of ryanodine receptors: Preclinical progress and the potential impact on treatments for cardiac arrhythmias and heart failure[J]. Expert Opinion on Therapeutic Targets, 2020, 24(1): 25–36. doi: 10.1080/14728222.2020.1708326.
|
| [125] |
JIANG Dawei, XIAO Bailong, YANG Dongmei, et al. RyR2 mutations linked to ventricular tachycardia and sudden death reduce the threshold for store-overload-induced Ca2+ release (SOICR)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(35): 13062–13067. doi: 10.1073/pnas.0402388101.
|
| [126] |
BELEVYCH A E, TERENTYEV D, TERENTYEVA R, et al. Shortened Ca2+ signaling refractoriness underlies cellular arrhythmogenesis in a postinfarction model of sudden cardiac death[J]. Circulation Research, 2012, 110(4): 569–577. doi: 10.1161/CIRCRESAHA.111.260455.
|
| [127] |
SONG Zhen, KO C Y, NIVALA M, et al. Calcium-voltage coupling in the genesis of early and delayed afterdepolarizations in cardiac myocytes[J]. Biophysical Journal, 2015, 108(8): 1908–1921. doi: 10.1016/j.bpj.2015.03.011.
|
| [128] |
QU Zhilin, XIE Laihua, OLCESE R, et al. Early afterdepolarizations in cardiac myocytes: Beyond reduced repolarization reserve[J]. Cardiovascular Research, 2013, 99(1): 6–15. doi: 10.1093/cvr/cvt104.
|
| [129] |
ZHAO Yanting, VALDIVIA C R, GURROLA G B, et al. Arrhythmogenesis in a catecholaminergic polymorphic ventricular tachycardia mutation that depresses ryanodine receptor function[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(13): E1669–E1677. doi: 10.1073/pnas.1419795112.
|
| [130] |
ZHONG Mingwang, REES C M, TERENTYEV D, et al. NCX-mediated subcellular Ca2+ dynamics underlying early afterdepolarizations in LQT2 cardiomyocytes[J]. Biophysical Journal, 2018, 115(6): 1019–1032. doi: 10.1016/j.bpj.2018.08.004.
|
| [131] |
SVENSSON B, NITU F R, REBBECK R T, et al. Molecular mechanism of a FRET biosensor for the cardiac ryanodine receptor pathologically leaky state[J]. International Journal of Molecular Sciences, 2023, 24(16): 12547. doi: 10.3390/ijms241612547.
|
| [132] |
WEHRENS X H T, LEHNART S E, REIKEN S R, et al. Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein Calstabin2[J]. Science, 2004, 304(5668): 292–296. doi: 10.1126/science.1094301.
|
| [133] |
GEORGE S A, BRENNAN-MCLEAN J A, TRAMPEL K A, et al. Ryanodine receptor inhibition with acute dantrolene treatment reduces arrhythmia susceptibility in human hearts[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2023, 325(4): H720–H728. doi: 10.1152/ajpheart.00103.2023.
|
| [134] |
MCCAULEY M D and WEHRENS X H T. Targeting ryanodine receptors for anti-arrhythmic therapy[J]. Acta Pharmacologica Sinica, 2011, 32(6): 749–757. doi: 10.1038/aps.2011.44.
|
| [135] |
KIRIYAMA K, KIYOSUE T, WANG J C, et al. Effects of JTV-519, a novel anti-ischaemic drug, on the delayed rectifier K+ current in guinea-pig ventricular myocytes[J]. Naunyn-Schmiedeberg’s Archives of Pharmacology, 2000, 361(6): 646–653. doi: 10.1007/s002100000230.
|
| [136] |
ISHIDA R, ZENG Xi, KUREBAYASHI N, et al. Discovery and structure–activity relationship of a ryanodine receptor 2 inhibitor[J]. Chemical and Pharmaceutical Bulletin, 2024, 72(4): 399–407. doi: 10.1248/cpb.c24-00114.
|
| [137] |
YANG Peichi, MORENO J D, MIYAKE C Y, et al. In silico prediction of drug therapy in catecholaminergic polymorphic ventricular tachycardia[J]. The Journal of Physiology, 2016, 594(3): 567–593. doi: 10.1113/JP271282.
|
| [138] |
YANG Peichi, BELARDINELLI L, and CLANCY C E. Mechanisms of chemical atrial defibrillation by flecainide and ibutilide[J]. JACC: Clinical Electrophysiology, 2024, 10(12): 2658–2673. doi: 10.1016/j.jacep.2024.08.009.
|
| [139] |
LV Tingting, LI Siyuan, LI Qing, et al. The role of RyR2 mutations in congenital heart diseases: Insights into cardiac electrophysiological mechanisms[J]. Journal of Cardiovascular Electrophysiology, 2025, 36(3): 683–692. doi: 10.1111/jce.16569.
|
| [140] |
KEEFE J A, MOORE O M, HO K S, et al. Role of Ca2+ in healthy and pathologic cardiac function: From normal excitation–contraction coupling to mutations that cause inherited arrhythmia[J]. Archives of Toxicology, 2023, 97(1): 73–92. doi: 10.1007/s00204-022-03385-0.
|
| [141] |
FOWLER E D, DIAKITE S L, GOMEZ A M, et al. Disruption of ventricular activation by subthreshold delayed afterdepolarizations in RyR2-R420Q catecholaminergic polymorphic ventricular tachycardia[J]. Journal of Molecular and Cellular Cardiology Plus, 2025, 13: 100466. doi: 10.1016/j.jmccpl.2025.100466.
|
| [142] |
KHERA R, OIKONOMOU E K, NADKARNI G N, et al. Transforming cardiovascular care with artificial intelligence: From discovery to practice: JACC state-of-the-art review[J]. Journal of the American College of Cardiology, 2024, 84(1): 97–114. doi: 10.1016/j.jacc.2024.05.003.
|
| [143] |
SHIFERAW K B, WALI P, WALTEMATH D, et al. Navigating the AI frontiers in cardiovascular research: A bibliometric exploration and topic modeling[J]. Frontiers in Cardiovascular Medicine, 2024, 10: 1308668. doi: 10.3389/fcvm.2023.1308668.
|
| [144] |
VANDENBERK B, CHEW D S, PRASANA D, et al. Successes and challenges of artificial intelligence in cardiology[J]. Frontiers in Digital Health, 2023, 5: 1201392. doi: 10.3389/fdgth.2023.1201392.
|
| [145] |
SAHLI COSTABAL F, YANG Yibo, PERDIKARIS P, et al. Physics-informed neural networks for cardiac activation mapping[J]. Frontiers in Physics, 2020, 8: 42. doi: 10.3389/fphy.2020.00042.
|
| [146] |
HERRERO MARTIN C, OVED A, CHOWDHURY R A, et al. EP-PINNs: Cardiac electrophysiology characterisation using physics-informed neural networks[J]. Frontiers in Cardiovascular Medicine, 2022, 8: 768419. doi: 10.3389/fcvm.2021.768419.
|
| [147] |
QIAN Shuang, UGURLU D, FAIRWEATHER E, et al. Developing cardiac digital twin populations powered by machine learning provides electrophysiological insights in conduction and repolarization[J]. Nature Cardiovascular Research, 2025, 4(5): 624–636. doi: 10.1038/s44161-025-00650-0.
|
| [148] |
CAMPS J, WANG Z J, DOSTE R, et al. Cardiac digital twin pipeline for virtual therapy evaluation[Z]. arXiv: 2401.10029, 2024. doi: 10.48550/arXiv.2401.10029. (查阅网上资料,请核对文献类型及格式是否正确).
|
| [149] |
TOMEK J, NIEVES-CINTRON M, NAVEDO M F, et al. SparkMaster 2: A new software for automatic analysis of calcium spark data[J]. Circulation Research, 2023, 133(6): 450–462. doi: 10.1161/CIRCRESAHA.123.322847.
|