| Citation: | ZHANG Boya, WANG Yong. A Frequency-Aware and Spatially Constrained Network for Ship Instance Segmentation in SAR Images[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250938 |
| [1] |
ZHOU Zheng, ZHAO Lingjun, JI Kefeng, et al. A domain-adaptive few-shot SAR ship detection algorithm driven by the latent similarity between optical and SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5216318. doi: 10.1109/TGRS.2024.3421512.
|
| [2] |
吴一凡, 黄丽佳, 严朝保, 等. 面向GEO SAR图像的海上区域运动目标检测方法[J]. 电子与信息学报, 2025, 47(6): 1723–1733. doi: 10.11999/JEIT240906.
WU Yifan, HUANG Lijia, YAN Chaobao, et al. A moving target detection method for GEO SAR image in maritime areas[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1723–1733. doi: 10.11999/JEIT240906.
|
| [3] |
周奕辰, 王勇, 丁文钧. 天基ISAR的高动态多普勒空间目标态势感知算法[J]. 电子与信息学报, 2025, 47(11): 4296–4306. doi: 10.11999/JEIT250667.
ZHOU Yichen, WANG Yong, and DING Wenjun. Highly dynamic Doppler space target situation awareness algorithm for spaceborne ISAR[J]. Journal of Electronics & Information Technology, 2025, 47(11): 4296–4306. doi: 10.11999/JEIT250667.
|
| [4] |
DONG Tiancheng, WANG Taoyang, LI Xuefei, et al. A large ship detection method based on component model in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 4108–4123. doi: 10.1109/JSTARS.2024.3514898.
|
| [5] |
王勇, 张博雅. 基于特征融合和定位增强的SAR图像舰船目标检测方法[J]. 系统工程与电子技术, 2025, 47(11): 3586–3597. doi: 10.12305/j.issn.1001-506X.2025.11.08.
WANG Yong and ZHANG Boya. Ship target detection method in SAR images based on feature fusion and location enhancement[J]. Systems Engineering and Electronics, 2025, 47(11): 3586–3597. doi: 10.12305/j.issn.1001-506X.2025.11.08.
|
| [6] |
孟祥伟. SAR图像中舰船目标恒虚警率检测技术的研究[J]. 电子与信息学报, 2024, 46(9): 3739–3748. doi: 10.11999/JEIT231436.
MENG Xiangwei. Research on constant false alarm rate detection technique for ship in SAR image[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3739–3748. doi: 10.11999/JEIT231436.
|
| [7] |
IERVOLINO P and GUIDA R. A novel ship detector based on the generalized-likelihood ratio test for SAR imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8): 3616–3630. doi: 10.1109/JSTARS.2017.2692820.
|
| [8] |
TIAN Chaoyang, LIU Dacheng, XUE Fengli, et al. Faster and lighter: A novel ship detector for SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4002005. doi: 10.1109/LGRS.2024.3351132.
|
| [9] |
LI Zhongzheng, DONG Hairong, ZHANG Liye, et al. MLANet: A robust ship segmentation network based on multilevel multiattention feature fusion for complex maritime background environments[J]. IEEE Sensors Journal, 2024, 24(24): 42404–42416. doi: 10.1109/JSEN.2024.3485967.
|
| [10] |
王磊, 张斌, 吴奇鸿. RCSA-YOLO: 改进YOLOv8的SAR舰船实例分割[J]. 计算机工程与应用, 2024, 60(18): 103–113. doi: 10.3778/j.issn.1002-8331.2401-0445.
WANG Lei, ZHANG Bin, and WU Qihong. RCSA-YOLO: Improved SAR ship instance segmentation of YOLOv8[J]. Computer Engineering and Applications, 2024, 60(18): 103–113. doi: 10.3778/j.issn.1002-8331.2401-0445.
|
| [11] |
LI Wentao, WANG Xinyu, XU Haixia, et al. PLDF-S3: Pseudo-label-driven framework for offshore to inshore unsupervised SAR image ship segmentation[J]. IEEE Geoscience and Remote Sensing Letters, 2025, 22: 4011505. doi: 10.1109/LGRS.2025.3595937.
|
| [12] |
WEI Shunjun, ZENG Xiangfeng, ZHANG Hao, et al. LFG-Net: Low-level feature guided network for precise ship instance segmentation in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5231017. doi: 10.1109/TGRS.2022.3188677.
|
| [13] |
LIU Li, ZHANG Shuo, and HU Mingtao. MFE-Net: A novel multiscale feature enhancement network for SAR ship instance segmentation[J]. IEEE Geoscience and Remote Sensing Letters, 2025, 22: 1504305. doi: 10.1109/LGRS.2025.3569712.
|
| [14] |
张天文, 张晓玲, 邵子康, 等. 基于掩模注意型交互的SAR舰船实例分割[J]. 系统工程与电子技术, 2024, 46(3): 831–838. doi: 10.12305/j.issn.1001-506X.2024.03.08.
ZHANG Tianwen, ZHANG Xiaoling, SHAO Zikang, et al. Mask attention interaction for SAR ship instance segmentation[J]. Systems Engineering and Electronics, 2024, 46(3): 831–838. doi: 10.12305/j.issn.1001-506X.2024.03.08.
|
| [15] |
ZHANG Qiang and HAN Zhen. DRSNet: Rotated-ROI ship segmentation for SAR images based on dual-scale cross attention[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4012805. doi: 10.1109/LGRS.2024.3420251.
|
| [16] |
KE Xiao, ZHANG Xiaoling, and ZHANG Tianwen. GCBANet: A global context boundary-aware network for SAR ship instance segmentation[J]. Remote Sensing, 2022, 14(9): 2165. doi: 10.3390/rs14092165.
|
| [17] |
CHEN Man, WANG Tianfeng, XU Chengcheng, et al. Gradient prior guidance and image adaptation enhancement for semi-supervised SAR ship instance segmentation[J]. IEEE Sensors Journal, 2024, 24(21): 36216–36229. doi: 10.1109/JSEN.2024.3467030.
|
| [18] |
JIANG Mingda, GU Lingjia, LI Xiaofeng, et al. Ship contour extraction from SAR images based on faster R-CNN and Chan–Vese model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5203414. doi: 10.1109/TGRS.2023.3247800.
|
| [19] |
KONG Weiming, ZHANG Yun, HUA Qinglong, et al. EGS-YOLO: Edge-guided semantic decoupling and Gaussian aggregation for lightweight SAR ship instance segmentation[C]. The 2025 IEEE Radar Conference, Krakow, Poland, 2025: 373–378. doi: 10.1109/RadarConf2559087.2025.11204995.
|
| [20] |
HE Kaiming, GKIOXARI G, DOLLÁR R, et al. Mask R-CNN[C]. The 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980–2988. doi: 10.1109/ICCV.2017.322.
|
| [21] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
|
| [22] |
HUANG Zhaojin, HUANG Lichao, GONG Yongchao, et al. Mask scoring R-CNN[C]. The 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 6402–6411. doi: 10.1109/CVPR.2019.00657.
|
| [23] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. The 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944. doi: 10.1109/CVPR.2017.106.
|
| [24] |
LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8759–8768. doi: 10.1109/CVPR.2018.00913.
|
| [25] |
REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]. The 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 658–666. doi: 10.1109/CVPR.2019.00075.
|
| [26] |
ZHENG Zhaohui, WANG Ping, LIU Wei, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 12993–13000. doi: 10.1609/aaai.v34i07.6999.
|
| [27] |
GEVORGYAN Z. SIoU loss: More powerful learning for bounding box regression[J/OL]. arXiv preprint arXiv: 2205.12740, 2022. doi: 10.48550/arXiv.2205.12740.
|
| [28] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
| [29] |
QIN Zequn, ZHANG Pengyi, WU Fei, et al. FcaNet: Frequency channel attention networks[C]. The 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 763–772. doi: 10.1109/ICCV48922.2021.00082.
|
| [30] |
ZHANG Tianwen, ZHANG Xiaoling, LI Jianwei, et al. SAR Ship Detection Dataset (SSDD): Official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13(18): 3690. doi: 10.3390/rs13183690.
|
| [31] |
WEI Shunjun, ZENG Xiangfeng, QU Qizhe, et al. HRSID: A high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 2020, 8: 120234–120254. doi: 10.1109/ACCESS.2020.3005861.
|