| Citation: | WU Ting, WEN Shulin, YAN Zhaoli, FU Gaoyuan, LI Linfeng, LIU Xudu, CHENG Xiaobin, YANG Jun. Unsupervised Anomaly Detection of Hydro-Turbine Generator Acoustics by Integrating Pre-Trained Audio Large Model and Density Estimation[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250934 |
| [1] |
黄紫馨, 李佰霖, 付文龙. 采用PSOGSA算法的水电机组调节系统非线性鲁棒控制研究[J]. 水力发电学报, 2024, 43(6): 101–112. doi: 10.11660/slfdxb.20240610.
HUANG Zixin, LI Bailin, and FU Wenlong. Study on nonlinear robust control of hydropower unit regulation system using PSOGSA algorithm[J]. Journal of Hydroelectric Engineering, 2024, 43(6): 101–112. doi: 10.11660/slfdxb.20240610.
|
| [2] |
YING Wanming, LI Lunyong, LI Yongbo, et al. Trustworthy multimodal feature-enhanced fusion network for non-contact rotating machinery fault diagnosis[J]. Information Fusion, 2025, 124: 103377. doi: 10.1016/j.inffus.2025.103377.
|
| [3] |
BECHARA H, IBRAHIM R, ZEMOURI R, et al. Review of artificial intelligence methods for faults monitoring, diagnosis, and prognosis in hydroelectric synchronous generators[J]. IEEE Access, 2024, 12: 173599–173617. doi: 10.1109/ACCESS.2024.3502546.
|
| [4] |
TANG Linjiang, WU Xing, WANG Dongxiao, et al. A comparative experimental study of vibration and acoustic emission on fault diagnosis of low-speed bearing[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3529211. doi: 10.1109/TIM.2023.3312761.
|
| [5] |
XU Shuxian, DAO Fang, ZENG Yun, et al. Fault diagnosis of hydro-turbine runner based on improved masking signal method incorporate RLMD[J]. Applied Acoustics, 2025, 228: 110371. doi: 10.1016/j.apacoust.2024.110371.
|
| [6] |
LV Yanchun, XU Lingjiang, YIN Chengyi, et al. Overview of abnormal sound detection for hydroelectric generating units[C]. Proceedings of 2023 7th International Conference on Electrical, Mechanical and Computer Engineering (ICEMCE), Xi’an, China, 2023: 597–604. doi: 10.1109/ICEMCE60359.2023.10490498.
|
| [7] |
LIU Yi, XU Yanhe, LIU Jie, et al. Real-time comprehensive health status assessment of hydropower units based on multi-source heterogeneous uncertainty information[J]. Measurement, 2023, 216: 112979. doi: 10.1016/j.measurement.2023.112979.
|
| [8] |
钟卫华, 张健, 徐衡, 等. 基于归一化流概率模型的水电机组异常声音检测[J]. 中国农村水利水电, 2024(1): 237–243,256. doi: 10.12396/znsd.230476.
ZHANG Weihua, ZHOU Jian, XU Heng, et al. Abnormal sound detection of hydropower units based on normalized flow probability model[J]. China Rural Water and Hydropower, 2024(1): 237–243,256. doi: 10.12396/znsd.230476.
|
| [9] |
LUO Jian, WANG Xinyang, and XU Yonggan. Vibration fault diagnosis for hydroelectric generating unit based on generalized S-transform and QPSO-SVM[C]. Proceedings of 2019 IEEE Sustainable Power and Energy Conference (iSPEC), Beijing, China, 2019: 2133–2137. doi: 10.1109/iSPEC48194.2019.8975046.
|
| [10] |
XIAO Boyi, ZENG Yun, HU Wenqing, et al. Feature extraction of flow sediment content of hydropower unit based on voiceprint signal[J]. Energies, 2024, 17(5): 1041. doi: 10.3390/en17051041.
|
| [11] |
BERNIER S, MERKHOUF A, and AL-HADDAD K. Diagnosis of multiple defects within large hydroelectric generator using stray flux and air gap (distance and flux) measurements[J]. IEEE Transactions on Industry Applications, 2024, 60(6): 8687–8700. doi: 10.1109/TIA.2024.3441519.
|
| [12] |
HE Shengming, WANG Zhaocheng, LIAO Bo, et al. Anomaly detection of hydro-turbine based on audio feature extraction of deep convolutional neural network[J]. International Journal of Computer Applications in Technology, 2023, 73(3): 192–202. doi: 10.1504/IJCAT.2023.135584.
|
| [13] |
董书琴, 张斌. 基于深度特征学习的网络流量异常检测方法[J]. 电子与信息学报, 2020, 42(3): 695–703. doi: 10.11999/JEIT190266.
DONG Shuqin and ZHANG Bin. Network traffic anomaly detection method based on deep features learning[J]. Journal of Electronics & Information Technology, 2020, 42(3): 695–703. doi: 10.11999/JEIT190266.
|
| [14] |
SUJATHA V. Investigation on Machine learning based fault detection and estimation in hydro turbines of industrial hydro power plant[J]. Measurement, 2025, 247: 116852. doi: 10.1016/j.measurement.2025.116852.
|
| [15] |
XU Xiong, DENG Jiazeng, LIN Haijun, et al. Lightweight anomalous detection of hydro turbine operation sound using fusion network enhanced by load information[J]. IEEE Transactions on Instrumentation and Measurement, 2025, 74: 9600213. doi: 10.1109/TIM.2025.3533632.
|
| [16] |
ZHAO Weiqiang, EGUSQUIZA M, VALERO C, et al. On the use of artificial neural networks for condition monitoring of pump-turbines with extended operation[J]. Measurement, 2020, 163: 107952. doi: 10.1016/j.measurement.2020.107952.
|
| [17] |
WANG Hongteng, LIU Xuewei, MA Liyong, et al. Anomaly detection for hydropower turbine unit based on variational modal decomposition and deep autoencoder[J]. Energy Reports, 2021, 7: 938–946. doi: 10.1016/j.egyr.2021.09.179.
|
| [18] |
IBRAHIM R, ZEMOURI R, KEDJAR B, et al. Non-invasive detection of rotor inter-turn short circuit of a hydrogenerator using AI-based variational autoencoder[J]. IEEE Transactions on Industry Applications, 2024, 60(1): 28–37. doi: 10.1109/TIA.2023.3281311.
|
| [19] |
IBRAHIM R, ZEMOURI R, TAHAN A, et al. Early detection of rotor faults in large hydrogenerators using vibration measurements, variational autoencoder, and Euclidean distance[J]. IEEE Transactions on Industry Applications, 2025, 61(6): 9023–9032. doi: 10.1109/TIA.2025.3571883.
|
| [20] |
郭铁峰, 贺建军, 申帅, 等. 基于动态规整与改进变分自编码器的异常电池在线检测方法[J]. 电子与信息学报, 2024, 46(2): 738–747. doi: 10.11999/JEIT230084.
GUO Tiefeng, HE Jianjun, SHEN Shuai, et al. Abnormal battery on-line detection method based on dynamic time warping and improved variational auto-encoder[J]. Journal of Electronics & Information Technology, 2024, 46(2): 738–747. doi: 10.11999/JEIT230084.
|
| [21] |
陈欣, 李紫薇, 张卫君, 等. 深度学习在水电机组故障诊断中的应用与研究[J]. 水电站机电技术, 2024, 47(12): 86–89. doi: 10.13599/j.cnki.11-5130.2024.12.024.
CHEN Xin, LI Ziwei, ZHANG Weijun, et al. Application and research of deep learning in fault diagnosis of hydropower units[J]. Mechanical & Electrical Technique of Hydropower Station, 2024, 47(12): 86–89. doi: 10.13599/j.cnki.11-5130.2024.12.024.
|
| [22] |
张晨旭, 李圣辰, 邵曦. 基于自编码器的无监督机器异常声检测[J]. 复旦学报: 自然科学版, 2021, 60(3): 297–302. doi: 10.15943/j.cnki.fdxb-jns.2021.03.004.
ZHANG Chenxu, LI Shengchen, and SHAO Xi. Unsupervised detection of anomalous sounds for machine based on auto-encoder[J]. Journal of Fudan University: Natural Science, 2021, 60(3): 297–302. doi: 10.15943/j.cnki.fdxb-jns.2021.03.004.
|
| [23] |
WILKINGHOFF K. Self-supervised learning for anomalous sound detection[C]. Proceedings of the ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Korea, Republic of, 2024: 276–280. doi: 10.1109/ICASSP48485.2024.10447156.
|
| [24] |
LI Xian, SHAO Nian, and LI Xiaofei. Self-supervised audio teacher-student transformer for both clip-level and frame-level tasks[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2024, 32: 1336–1351. doi: 10.1109/TASLP.2024.3352248.
|
| [25] |
NIIZUMI D, TAKEUCHI D, OHISHI Y, et al. Masked modeling duo: Towards a universal audio pre-training framework[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2024, 32: 2391–2406. doi: 10.1109/TASLP.2024.3389636.
|
| [26] |
SRIVASTAVA S and SHARMA G. OmniVec2-a novel transformer based network for large scale multimodal and multitask learning[C]. Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA: 27402–27414. doi: 10.1109/CVPR52733.2024.02588.
|
| [27] |
CHEN Sanyuan, WU Yu, WANG Chengyi, et al. BEATs: Audio pre-training with acoustic tokenizers[C]. Proceedings of the 40th International Conference on Machine Learning, Honolulu, USA, 2023: 5178–5193.
|
| [28] |
DENG Jiankang, GUO Jia, XUE Niannan, et al. ArcFace: Additive angular margin loss for deep face recognition[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 4685–4694. doi: 10.1109/CVPR.2019.00482.
|
| [29] |
XU Xiong, WEN He, LIN Haijun, et al. Online detection method for variable load conditions and anomalous sound of hydro turbines using correlation analysis and PCA-adaptive-K-means[J]. Measurement, 2024, 224: 113846. doi: 10.1016/j.measurement.2023.113846.
|