Advanced Search
Turn off MathJax
Article Contents
CHEN Tao, ZHAO Wangpeng, BIE Mengni, LI Wei, NAN Longmei, DU Yiran, FU Qiuxing. Research on the Architecture of Dual-Field Reconfigurable Polynomial Multiplication Unit for Lattice-Based Post-Quantum Cryptography[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250929
Citation: CHEN Tao, ZHAO Wangpeng, BIE Mengni, LI Wei, NAN Longmei, DU Yiran, FU Qiuxing. Research on the Architecture of Dual-Field Reconfigurable Polynomial Multiplication Unit for Lattice-Based Post-Quantum Cryptography[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250929

Research on the Architecture of Dual-Field Reconfigurable Polynomial Multiplication Unit for Lattice-Based Post-Quantum Cryptography

doi: 10.11999/JEIT250929 cstr: 32379.14.JEIT250929
Funds:  The National Natural Science Foundation of China (62302519)
  • Received Date: 2025-09-16
  • Accepted Date: 2026-01-27
  • Rev Recd Date: 2026-01-27
  • Available Online: 2026-02-12
  •   Objective  Polynomial multiplication accounts for over 80% of computational time in lattice cryptography algorithms. Utilizing the Nhanh Transform (NTT) and Fast Fourier Transform (FFT) can reduce the computational complexity of polynomial multiplication from exponential to logarithmic. However, current mainstream lattice cryptography algorithms such as Kyber, Dilithium, and Falcon exhibit significant differences in their parameter sets and polynomial multiplication implementations. To support multi-parameter polynomial multiplication operations and enhance resource utilization for polynomial multiplication, this paper proposes a dual-field reconfigurable polynomial multiplication unit architecture.  Methods  This paper first extracts the computational network for polynomial multiplication based on the parameter characteristics of the Kyber, Dilithium, and Falcon algorithms, and optimizes the internal dual-field multiplication operations at the algorithmic level. Secondly, it designs a dual-field reconfigurable polynomial multiplication unit architecture for the polynomial multiplication network and further optimizes the dual-field reconfigurable multiplication unit to enhance computational speed. Finally, to improve resource utilization of the computational unit architecture, the paper conducts a parallelism analysis. The polynomial multiplication architecture achieves the highest area efficiency when supporting 1-lane 64-bit, 2-lane 32-bit, or 4-lane 16-bit operations.  Results and Discussions  The paper was experimentally verified on the Xilinx FPGA XC7V2000TFLG1925. It simultaneously supports one channel of complex-form floating-point operations or two channels of 17- to 32-bit and four channels of 16-bit internal NTT operations. Operating at a frequency of 169 MHz, it achieves a reduction of over 50% in area-time product.  Conclusions  The dual-field reconfigurable processing unit architecture proposed in this paper offers advantages in scalability, area efficiency, and core unit performance. Its bit width configuration is more easily adaptable to traditional cryptographic processors, providing a recommended approach for transitioning traditional public-key cryptosystems to post-quantum cryptography.
  • loading
  • [1]
    BOS J, DUCAS L, KILTZ E, et al. CRYSTALS - Kyber: A CCA-secure module-lattice-based KEM[C]. Proceedings of 2018 IEEE European Symposium on Security and Privacy, London, UK, 2018: 353–367. doi: 10.1109/EuroSP.2018.00032.
    [2]
    DUCAS L, KILTZ E, LEPOINT T, et al. CRYSTALS-Dilithium: A lattice-based digital signature scheme[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2018, 2018(1): 238–268. doi: 10.13154/tches.v2018.i1.238-268.
    [3]
    FOUQUE P A, HOFFSTEIN J, KIRCHNER P, et al. Falcon: Fast-Fourier lattice-based compact signatures over NTRU[R]. Submission to the NIST’s Post-Quantum Cryptogr. Standardization Process, 2020. (查阅网上资料, 未找到本条文献出版信息, 请确认).
    [4]
    ALHASSANI A and BENAISSA M. High-speed polynomials multiplication HW accelerator for CRYSTALS-Kyber[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2024, 71(12): 6105–6113. doi: 10.1109/TCSI.2024.3427011.
    [5]
    LI Aobo, LU Jiahao, LIU Dongsheng, et al. A 40nm 2.76μJ/Op energy-efficient secure post-quantum crypto-processor for crystals-Kyber on module-LWE[C]. Proceedings of 2023 IEEE Asian Solid-State Circuits Conference (A-SSCC), Haikou, China, 2023: 1–3. doi: 10.1109/A-SSCC58667.2023.10347915.
    [6]
    LI Xiang, LU Jiahao, LIU Dongsheng, et al. A high speed post-quantum crypto-processor for crystals-dilithium[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(1): 435–439. doi: 10.1109/TCSII.2023.3304416.
    [7]
    HU Xiao, TIAN Jing, LI Minghao, et al. AC-PM: An area-efficient and configurable polynomial multiplier for lattice based cryptography[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70(2): 719–732. doi: 10.1109/TCSI.2022.3218192.
    [8]
    陈韬, 李慧琴, 吴艾青, 等. 基于2KNTT的多项式乘法单元设计[J]. 电子学报, 2024, 52(2): 455–467. doi: 10.12263/DZXB.20220629.

    CHEN Tao, LI Huiqin, WU Aiqing, et al. A polynomial multiplier design based on 2KNTT[J]. Acta Electronica Sinica, 2024, 52(2): 455–467. doi: 10.12263/DZXB.20220629.
    [9]
    XU Tianyu, CUI Yijun, LIU Dongsheng, et al. Lightweight and efficient hardware implementation for saber using NTT multiplication[C]. Proceedings of 2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Shenzhen, China, 2022: 601–605. doi: 10.1109/APCCAS55924.2022.10090310.
    [10]
    AIKATA A, MERT A C, IMRAN M, et al. KaLi: A crystal for post-quantum security using Kyber and dilithium[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70(2): 747–758. doi: 10.1109/TCSI.2022.3219555.
    [11]
    LU Jiahao, ZHANG Jiaming, LUO Zhixiang, et al. An efficient and configurable hardware architecture of polynomial modular operation for CRYSTALS-Kyber and dilithium[C]. Proceedings of 2024 IEEE 67th International Midwest Symposium on Circuits and Systems (MWSCAS), Springfield, USA, 2024: 29–32. doi: 10.1109/MWSCAS60917.2024.10658892.
    [12]
    ZHU Yihong, ZHU Wenping, OUYANG Yi, et al. 16.2 A 28nm 69.4kOPS 4.4μJ/Op versatile post-quantum crypto-processor across multiple mathematical problems[C]. Proceedings of 2024 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2024: 298–300. doi: 10.1109/ISSCC49657.2024.10454332.
    [13]
    WANG Jianfei, YANG Chen, HOU Jia, et al. A compact and efficient hardware accelerator for RNS-CKKS En/decoding and En/decryption[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2025, 72(1): 243–247. doi: 10.1109/TCSII.2024.3454024.
    [14]
    陈韬, 李慧琴, 李伟, 等. 面向格基后量子密码算法的可重构多项式乘法架构[J]. 电子与信息学报, 2023, 45(9): 3380–3392. doi: 10.11999/JEIT230284.

    CHEN Tao, LI Huiqin, LI Wei, et al. Reconfigurable polynomial multiplication architecture for lattice-based post-quantum cryptography algorithms[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3380–3392. doi: 10.11999/JEIT230284.
    [15]
    付秋兴, 李伟, 别梦妮, 等. 格基后量子密码的可重构NTT运算单元与高效调度算法研究[J]. 电子学报, 2025, 53(4): 1182–1191. doi: 10.12263/DZXB.20240788.

    FU Qiuxing, LI Wei, BIE Mengni, et al. Research on reconfigurable NTT arithmetic unit and efficient scheduling algorithm for lattice post-quantum cryptography[J]. Acta Electronica Sinica, 2025, 53(4): 1182–1191. doi: 10.12263/DZXB.20240788.
    [16]
    LYUBASHEVSKY V, MICCIANCIO D, PEIKERT C, et al. SWIFFT: A modest proposal for FFT hashing[C]. Proceedings of the 15th International Workshop on Fast Software Encryption, Lausanne, Switzerland, 2008: 54–72. doi: 10.1007/978-3-540-71039-4_4.
    [17]
    COOLEY J W and TUKEY J W. An algorithm for the machine calculation of complex Fourier series[J]. Mathematics of Computation, 1965, 19(90): 297–301. doi: 10.1090/S0025-5718-1965-0178586-1.
    [18]
    GENTLEMAN W M and SANDE G. Fast Fourier transforms: For fun and profit[C]. Proceedings of the November 7-10, 1966, Fall Joint Computer Conference, San Francisco, USA, 1966: 563–578. doi: 10.1145/1464291.1464352.
    [19]
    ZHAO Yifan, XIE Ruiqi, XIN Guozhu, et al. A high-performance domain-specific processor with matrix extension of RISC-V for module-LWE applications[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(7): 2871–2884. doi: 10.1109/TCSI.2022.3162593.
    [20]
    MU Jianan, REN Yi, WANG Wen, et al. Scalable and conflict-free NTT hardware accelerator design: Methodology, proof, and implementation[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42(5): 1504–1517. doi: 10.1109/TCAD.2022.3205552.
    [21]
    LIAO Junhao, CHO K T, and SHIEH M D. A unified FFT/NTT design for efficient NTRU equation solving in FALCON cryptography[C]. Proceedings of 2025 IEEE International Symposium on Circuits and Systems (ISCAS), London, United Kingdom, 2025: 1–5. doi: 10.1109/ISCAS56072.2025.11043318.
    [22]
    PORNIN T. Improved key pair generation for falcon, BAT and hawk[J]. IACR Cryptol ePrint Arch, 2023, 2023: 290. (查阅网上资料, 未找到本条文献刊名和卷期页码信息, 请确认).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(6)

    Article Metrics

    Article views (34) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return