| Citation: | LIU Pengyu, ZHENG Tianyang, DONG Min Liu. A Fake Attention Map-Driven Multi-Task Deepfake Video Detection Model[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250926 |
| [1] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139–144. doi: 10.1145/3422622.
|
| [2] |
TORA M. Deepfakes[EB/OL]. https://github.com/deepfakes/faceswap, 2018. (查阅网上资料,未找到本条文献作者信息,请确认).
|
| [3] |
LIU Kunlin, PEROV I, GAO Daiheng, et al. Deepfacelab: Integrated, flexible and extensible face-swapping framework[J]. Pattern Recognition, 2023, 141: 109628. doi: 10.1016/j.patcog.2023.109628.
|
| [4] |
MarekKowalski. Faceswap[EB/OL]. https://github.com/MarekKowalski/FaceSwap, 2019.
|
| [5] |
CAHLAN S. How misinformation helped spark an attempted coup in Gabon[EB/OL]. https://wapo.st/3KZARDF, 2020.
|
| [6] |
WAKEFIELD J. Deepfake presidents used in Russia-Ukraine war[EB/OL]. https://www.bbc.com/news/technology-60780142, 2022.
|
| [7] |
陈宇飞, 沈超, 王骞, 等. 人工智能系统安全与隐私风险[J]. 计算机研究与发展, 2019, 56(10): 2135–2150. doi: 10.7544/issn1000-1239.2019.20190415.
CHEN Yufei, SHEN Chao, WANG Qian, et al. Security and privacy risks in artificial intelligence systems[J]. Journal of Computer Research and Development, 2019, 56(10): 2135–2150. doi: 10.7544/issn1000-1239.2019.20190415.
|
| [8] |
YANG Rui, YOU Kang, PANG Cheng, et al. CSTAN: A deepfake detection network with CST attention for superior generalization[J]. Sensors, 2024, 24(22): 7101. doi: 10.3390/s24227101.
|
| [9] |
JHA A K, YADAV A K, DUBEY A K, et al. Deep learning based deepfake video detection system[C]. 2025 3rd International Conference on Disruptive Technologies (ICDT), Greater Noida, India, 2025: 408–412. doi: 10.1109/ICDT63985.2025.10986738.
|
| [10] |
MISHRA S, SHARMA A, DWIVEDI P D, et al. TransDFD: A deepfake detection system of mesoscopic level deepfake-guard-AI[C]. 2025 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI), Gwalior, India, 2025: 1–6. doi: 10.1109/IATMSI64286.2025.10984648.
|
| [11] |
CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 1800–1807. doi: 10.1109/CVPR.2017.195.
|
| [12] |
TAN Mingxing and LE Q. EfficientNet: Rethinking model scaling for convolutional neural networks[C]. Proceedings of the 36th International Conference on Machine Learning, Long Beach, USA, 2019: 6105–6114. doi: 10.1109/ICML.2019.00615. (查阅网上资料,未找到本条文献doi信息,请确认).
|
| [13] |
ZHAO Hanqing, WEI Tianyi, ZHOU Wenbo, et al. Multi-attentional deepfake detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 2185–2194. doi: 10.1109/CVPR46437.2021.00222.
|
| [14] |
LE B M and WOO S S. Quality-agnostic deepfake detection with intra-model collaborative learning[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 22321–22332. doi: 10.1109/ICCV51070.2023.02045.
|
| [15] |
孙磊, 张洪蒙, 毛秀青, 等. 基于超分辨率重建的强压缩深度伪造视频检测[J]. 电子与信息学报, 2021, 43(10): 2967–2975. doi: 10.11999/JEIT200531.
SUN Lei, ZHANG Hongmeng, MAO Xiuqing, et al. Super-resolution reconstruction detection method for DeepFake hard compressed videos[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2967–2975. doi: 10.11999/JEIT200531.
|
| [16] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944. doi: 10.1109/CVPR.2017.106.
|
| [17] |
ZAFAR F, KHAN T A, AKBAR S, et al. A hybrid deep learning framework for deepfake detection using temporal and spatial features[J]. IEEE Access, 2025, 13: 79560–79570. doi: 10.1109/ACCESS.2025.3566008.
|
| [18] |
XIANG Sheng, MA Junhao, SHANG Qunli, et al. Two-layer attention feature pyramid network for small object detection[J]. Computer Modeling in Engineering & Sciences, 2024, 141(1): 713–731. doi: 10.32604/cmes.2024.052759.
|
| [19] |
DANG Jin, TANG Xiaofen, and LI Shuai. HA-FPN: Hierarchical attention feature pyramid network for object detection[J]. Sensors, 2023, 23(9): 4508. doi: 10.3390/s23094508.
|
| [20] |
TAN Mingxing, PANG Ruoming, and LE Q V. EfficientDet: Scalable and efficient object detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 10778–10787. doi: 10.1109/CVPR42600.2020.01079.
|
| [21] |
CHEN Yuqi, ZHU Xiangbin, LI Yonggang, et al. Enhanced semantic feature pyramid network for small object detection[J]. Signal Processing: Image Communication, 2023, 113: 116919. doi: 10.1016/j.image.2023.116919.
|
| [22] |
AYINDE B O, INANC T, and ZURADA J M. Regularizing deep neural networks by enhancing diversity in feature extraction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(9): 2650–2661. doi: 10.1109/TNNLS.2018.2885972.
|
| [23] |
HESSE R, SCHAUB-MEYER S, and ROTH S. Content-adaptive downsampling in convolutional neural networks[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Vancouver, Canada, 2023: 4544–4553. doi: 10.1109/CVPRW59228.2023.00478.
|
| [24] |
WANG Shuai, ZHU Donghui, CHEN Jian, et al. Deepfake face discrimination based on self-attention mechanism[J]. Pattern Recognition Letters, 2024, 183: 92–97. doi: 10.1016/j.patrec.2024.02.019.
|
| [25] |
赖志茂, 章云, 李东. 基于Transformer的人脸深度伪造检测技术综述[J]. 广东工业大学学报, 2023, 40(6): 155–167. doi: 10.12052/gdutxb.230130.
LAI Zhimao, ZHANG Yun, and LI Dong. A survey of deepfake detection techniques based on Transformer[J]. Journal of Guangdong University of Technology, 2023, 40(6): 155–167. doi: 10.12052/gdutxb.230130.
|
| [26] |
KINGRA S, AGGARWAL N, and KAUR N. SFormer: An end-to-end spatio-temporal transformer architecture for deepfake detection[J]. Forensic Science International: Digital Investigation, 2024, 51: 301817. doi: 10.1016/j.fsidi.2024.301817.
|
| [27] |
KHORMALI A and YUAN J S. Self-supervised graph transformer for deepfake detection[J]. IEEE Access, 2024, 12: 58114–58127. doi: 10.1109/ACCESS.2024.3392512.
|
| [28] |
COCCOMINI D A, MESSINA N, GENNARO C, et al. Combining EfficientNet and vision transformers for video deepfake detection[C]. 21st International Conference on Image Analysis and Processing, Lecce, Italy, 2022: 219–229. doi: 10.1007/978-3-031-06433-3_19.
|
| [29] |
CAI Zhixi, GHOSH S, STEFANOV K, et al. MARLIN: Masked autoencoder for facial video representation LearnINg[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 1493–1504. doi: 10.1109/CVPR52729.2023.00150.
|
| [30] |
CAO Junyi, MA Chao, YAO Taiping, et al. End-to-end reconstruction-classification learning for face forgery detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Orleans, USA, 2022: 4103–4112. doi: 10.1109/CVPR52688.2022.00408.
|
| [31] |
MEJRI N, GHORBEL E, and AOUADA D. UNTAG: Learning generic features for unsupervised type-agnostic deepfake detection[C]. ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023: 1–5. doi: 10.1109/ICASSP49357.2023.10095983.
|
| [32] |
ZHENG Junshuai, ZHOU Yichao, HU Xiyuan, et al. DT-TransUNet: A dual-task model for deepfake detection and segmentation[C]. 6th Chinese Conference on Pattern Recognition and Computer Vision (PRCV), Xiamen, China, 2023: 244–255. doi: 10.1007/978-981-99-8540-1_20.
|
| [33] |
ZOU Mian, YU Baosheng, ZHAN Yibing, et al. Semantics-oriented multitask learning for DeepFake detection: A joint embedding approach[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2025, 35(10): 9950–9963. doi: 10.1109/TCSVT.2025.3572508.
|
| [34] |
LI Lingzhi, BAO Jianmin, ZHANG Ting, et al. Face X-ray for more general face forgery detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 5000–5009. doi: 10.1109/CVPR42600.2020.00505.
|
| [35] |
YANG Yang, IDRIS N B, LIU Chang, et al. A destructive active defense algorithm for deepfake face images[J]. PeerJ Computer Science, 2024, 10: e2356. doi: 10.7717/peerj-cs.2356.
|
| [36] |
GONG Liangyu and LI Xuejun. A contemporary survey on deepfake detection: Datasets, algorithms, and challenges[J]. Electronics, 2024, 13(3): 585. doi: 10.3390/electronics13030585.
|
| [37] |
NGUYEN H H, FANG Fuming, YAMAGISHI J, et al. Multi-task learning for detecting and segmenting manipulated facial images and videos[C]. 2019 IEEE 10th International Conference on Biometrics Theory, Applications and Systems (BTAS), Tampa, USA, 2019: 1–8. doi: 10.1109/BTAS46853.2019.9185974.
|
| [38] |
SHIOHARA K and YAMASAKI T. Detecting deepfakes with self-blended images[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 18699–18708. doi: 10.1109/CVPR52688.2022.01816.
|
| [39] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19. doi: 10.1007/978-3-030-01234-2_1.
|
| [40] |
NGUYEN D, MEJRI N, SINGH I P, et al. LAA-Net: Localized artifact attention network for quality-agnostic and generalizable deepfake detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 17395–17405. doi: 10.1109/CVPR52733.2024.01647.
|
| [41] |
DONG Shichao, WANG Jin, JI Renhe, et al. Implicit identity leakage: The stumbling block to improving deepfake detection generalization[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 3994–4004. doi: 10.1109/CVPR52729.2023.00389.
|
| [42] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2999–3007. doi: 10.1109/ICCV.2017.324.
|
| [43] |
ZHAO Tianchen, XU Xiang, XU Mingze, et al. Learning self-consistency for deepfake detection[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 15003–15013. doi: 10.1109/ICCV48922.2021.01475.
|
| [44] |
RÖSSLER A, COZZOLINO D, VERDOLIVA L, et al. FaceForensics++: Learning to detect manipulated facial images[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 1–11. doi: 10.1109/ICCV.2019.00009.
|
| [45] |
THIES J, ZOLLHÖFER M, STAMMINGER M, et al. Face2Face: Real-time face capture and reenactment of RGB videos[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016, 2387–2395. doi: 10.1109/CVPR.2016.262.
|
| [46] |
THIES J, ZOLLHÖFER M, and NIEßNER M. Deferred neural rendering: Image synthesis using neural textures[J]. ACM Transactions on Graphics (TOG), 2019, 38(4): 66. doi: 10.1145/3306346.3323035.
|
| [47] |
LI Yuezun, YANG Xin, SUN Pu, et al. Celeb-DF: A large-scale challenging dataset for DeepFake forensics[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 3204–3213. doi: 10.1109/CVPR42600.2020.00327.
|
| [48] |
DUFOUR N and GULLY A. Contributing data to deepfake detection research[EB/OL]. https://research.google/blog/contributing-data-to-deepfake-detection-research/, 2019.
|
| [49] |
DOLHANSKY B, HOWES R, PFLAUM B, et al. The deepfake detection challenge (DFDC) preview dataset[J]. arXiv preprint arXiv: 1910.08854, 2019. doi: 10.48550/arXiv.1910.08854.(不确定本条文献类型及格式是否正确,请确认).
|
| [50] |
ZI Bojia, CHANG Minghao, CHEN Jingjing, et al. WildDeepfake: A challenging real-world dataset for deepfake detection[C]. Proceedings of the 28th ACM International Conference on Multimedia, Seattle, USA, 2020: 2382–2390. doi: 10.1145/3394171.3413769.
|
| [51] |
DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 248–255. doi: 10.1109/CVPR.2009.5206848.
|
| [52] |
TAN Mingxing and LE Q. EfficientNetV2: Smaller models and faster training[C]. Proceedings of the 38th International Conference on Machine Learning, 2021: 10096–10106. doi: 10.48550/arxiv.2104.00298. (查阅网上资料,未找到本条文献出版地和doi信息,请确认).
|
| [53] |
FORET P, KLEINER A, MOBAHI H, et al. Sharpness-aware minimization for efficiently improving generalization[C]. International Conference on Learning Representations, Vienna, Austria, 2021. doi: 10.48550/arXiv.2010.01412. (查阅网上资料,未找到本条文献doi信息,请确认).
|
| [54] |
MÜLLER R, KORNBLITH S, and HINTON G. When does label smoothing help?[C]. Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 422. doi: 10.5555/3454287.3454709.
|
| [55] |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]. Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 618–626. doi: 10.1109/ICCV.2017.74.
|
| [56] |
ZHANG Rui, JIANG Zixuan, and SUN Changxu. Two-branch deepfake detection network based on improved Xception[C]. 2023 IEEE International Conference on Electrical, Automation and Computer Engineering (ICEACE), Changchun, China, 2023: 227–231. doi: 10.1109/ICEACE60673.2023.10442716.
|
| [57] |
YAN Zhiyuan, ZHANG Yong, FAN Yanbo, et al. UCF: Uncovering common features for generalizable deepfake detection[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 22355–22366. doi: 10.1109/ICCV51070.2023.02048.
|
| [58] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]. International Conference on Learning Representations, Vienna, Austria, 2021. doi: 10.48550/arxiv.2010.11929. (查阅网上资料,未找到本条文献doi信息,请确认).
|
| [59] |
NGUYEN D, ASTRID M, GHORBEL E, et al. FakeFormer: Efficient vulnerability-driven transformers for generalisable deepfake detection[J]. arXiv preprint arXiv: 2410.21964, 2024. doi: 10.48550/arxiv.2410.21964. (不确定本条文献类型及格式是否正确,请确认).
|
| [60] |
BAI Weiming, LIU Yufan, ZHANG Zhipeng, et al. AUNet: Learning relations between action units for face forgery detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 24709–24719. doi: 10.1109/CVPR52729.2023.02367.
|