| Citation: | SA Baihui, ZHUANG Jingyi, ZHENG Jinjie, ZHU Jianqing. CaRS-Align: Channel Relation Spectra Alignment for Cross-Modal Vehicle Re-identification[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250917 |
| [1] |
LIU Feng, HUANG Kaiwen, and LI Qin. Knowledge-driven multi-branch interaction network for vehicle re-identification[J]. IEEE Transactions on Intelligent Transportation Systems, 2025, 26(10): 17000–17012. doi: 10.1109/TITS.2025.3573396.
|
| [2] |
SHEN Fei, XIE Yi, ZHU Jianqing, et al. GiT: Graph interactive transformer for vehicle re-identification[J]. IEEE Transactions on Image Processing, 2023, 32: 1039–1051. doi: 10.1109/TIP.2023.3238642.
|
| [3] |
王博文, 郑建, 孙彦景, 等. 应急场景无人机自组网部分重叠信道动态分配方法[J]. 电子与信息学报, 2024, 46(12): 4373–4382. doi: 10.11999/JEIT240377.
WANG Bowen, ZHENG Jian, SUN Yanjing, et al. Partially overlapping channels dynamic allocation method for UAV Ad-hoc networks in emergency scenario[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4373–4382. doi: 10.11999/JEIT240377.
|
| [4] |
钱志鸿, 田春生, 郭银景, 等. 智能网联交通系统的关键技术与发展[J]. 电子与信息学报, 2020, 42(1): 2–19. doi: 10.11999/JEIT190787.
QIAN Zhihong, TIAN Chunsheng, GUO Yinjing, et al. The key technology and development of intelligent and connected transportation system[J]. Journal of Electronics & Information Technology, 2020, 42(1): 2–19. doi: 10.11999/JEIT190787.
|
| [5] |
HE Wenying, WANG Feiyu, BAI Yude, et al. PEFN: A patches enhancement and hierarchical fusion network for robust vehicle re-identification[J]. IEEE Internet of Things Journal, 2025, 12(14): 26898–26910. doi: 10.1109/JIOT.2025.3561186.
|
| [6] |
LI Hongchao, CHEN Jingong, ZHENG Aihua, et al. Day-night cross-domain vehicle re-identification[C]. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 12626–12635. doi: 10.1109/cvpr52733.2024.01200.
|
| [7] |
GUO Jinbo, ZHANG Xiaojing, LIU Zhengyi, et al. Generative and attentive fusion for multi-spectral vehicle re-identification[C]. Proceedings of the 7th International Conference on Intelligent Computing and Signal Processing, Xi'an, China, 2022: 1565–1572. doi: 10.1109/icsp54964.2022.9778769.
|
| [8] |
LI Hongchao, LI Chenglong, ZHU Xianpeng, et al. Multi-spectral vehicle re-identification: A challenge[C]. Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 11345–11353. doi: 10.1609/aaai.v34i07.6796.
|
| [9] |
ZHENG Aihua, ZHU Xianpeng, MA Zhiqi, et al. Cross-directional consistency network with adaptive layer normalization for multi-spectral vehicle re-identification and a high-quality benchmark[J]. Information Fusion, 2023, 100: 101901. doi: 10.1016/j.inffus.2023.101901.
|
| [10] |
ZHANG Hongyang, KUANG Zhenyu, CHENG Lidong, et al. Aivr-net: Attribute-based invariant visual representation learning for vehicle re-identification[J]. Knowledge-Based Systems, 2024, 289: 111455. doi: 10.1016/j.knosys.2024.111455.
|
| [11] |
BAU D, ZHOU Bolei, KHOSLA A, et al. Network dissection: Quantifying interpretability of deep visual representations[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 3319–3327. doi: 10.1109/cvpr.2017.354.
|
| [12] |
ZEILER M D and FERGUS R. Visualizing and understanding convolutional networks[C]. Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 818–833. doi: 10.1007/978-3-319-10590-1_53.
|
| [13] |
HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141. doi: 10.1109/cvpr.2018.00745.
|
| [14] |
LU Zefeng, LIN Ronghao, and HU Haifeng, Modality and camera factors bi-disentanglement for NIR-VIS object re-identification[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 1989–2004. doi: 10.1109/tifs.2023.3262130.
|
| [15] |
YE Mang, RUAN Weijian, DU Bo, et al. Channel augmented joint learning for visible-infrared recognition[C]. Proceedings of IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 13547–13556. doi: 10.1109/iccv48922.2021.01331.
|
| [16] |
霍东东, 杜海顺. 基于通道重组和注意力机制的跨模态行人重识别[J]. 激光与光电子学进展, 2023, 60(14): 1410007. doi: 10.3788/LOP221850.
HUO Dongdong and DU Haishun. Cross-modal person re-identification based on channel reorganization and attention mechanism[J]. Laser & Optoelectronics Progress, 2023, 60(14): 14100007. doi: 10.3788/LOP221850.
|
| [17] |
QIN Wencheng, HUANG Baojin, HUANG Zhiyong, et al. Deep constraints space via channel alignment for visible-infrared person re-identification[J]. IEEE Signal Processing Letters, 2022, 29: 2672–2676. doi: 10.1109/LSP.2022.3233002.
|
| [18] |
LIU Jiachang, SONG Wanru, CHEN Changhong, et al. Cross-modality person re-identification via channel-based partition network[J]. Applied Intelligence, 2022, 52(3): 2423–2435. doi: 10.1007/s10489-021-02548-3.
|
| [19] |
伍邦谷, 张苏林, 石红, 等. 基于多分支结构的不确定性局部通道注意力机制[J]. 电子学报, 2022, 50(2): 374–382. doi: 10.12263/DZXB.20201204.
WU Banggu, ZHANG Sulin, SHI Hong, et al. Multi-branch structure based local channel attention with uncertainty[J]. Acta Electronica Sinica, 2022, 50(2): 374–382. doi: 10.12263/DZXB.20201204.
|
| [20] |
SI Yunzhong, XU Huiying, ZHU Xinzhong, et al. SCSA: Exploring the synergistic effects between spatial and channel attention[J]. Neurocomputing, 2025, 634: 129866. doi: 10.1016/j.neucom.2025.129866.
|
| [21] |
HONG C, KIM H, BAIK S, et al. DAQ: Channel-wise distribution-aware quantization for deep image super-resolution networks[C]. Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2022: 913–922. doi: 10.1109/wacv51458.2022.00099.
|
| [22] |
WANG Yang, PENG Jinjia, WANG Huibing, et al. Progressive learning with multi-scale attention network for cross-domain vehicle re-identification[J]. Science China Information Sciences, 2022, 65(6): 160103. doi: 10.1007/s11432-021-3383-y.
|
| [23] |
LIU Xinchen, LIU Wu, ZHENG Jinkai, et al. Beyond the parts: Learning multi-view cross-part correlation for vehicle re-identification[C]. Proceedings of the 28th ACM International Conference on Multimedia, Seattle, USA, 2020: 907–915. doi: 10.1145/3394171.3413578.
|
| [24] |
QIAN Jiuchao, PAN Minting, TONG Wei, et al. URRNet: A unified relational reasoning network for vehicle re-identification[J]. IEEE Transactions on Vehicular Technology, 2023, 72(9): 11156–11168. doi: 10.1109/TVT.2023.3262983.
|
| [25] |
HUA Xuecheng, CHENG Ke, LU Hu, et al. MSCMNet: Multi-scale semantic correlation mining for visible-infrared person re-identification[J]. Pattern Recognition, 2025, 159: 111090. doi: 10.1016/j.patcog.2024.111090.
|
| [26] |
LI Jiarui, ZHEN Qiu, YANG Yilin, et al. Prototype-driven multi-feature generation for visible-infrared person re-identification[C]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Hyderabad, India, 2025: 1–5. doi: 10.1109/ICASSP49660.2025.10889917.
|
| [27] |
HUANG Linhan, CHEN Yutao, LIU Liu, et al. Harmonizing metric discrepancy for cross-modal object re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2025, 35(11): 11129–11143. doi: 10.1109/TCSVT.2025.3576091.
|
| [28] |
YANG Mouxing, HUANG Zhenyu, and PENG Xi. Robust object re-identification with coupled noisy labels[J]. International Journal of Computer Vision, 2024, 132(7): 2511–2529. doi: 10.1007/s11263-024-01997-w.
|
| [29] |
YU Hao, CHENG Xu, PENG Wei, et al. Modality unifying network for visible-infrared person re-identification[C]. Proceedings of IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 11151–11161. doi: 10.1109/iccv51070.2023.01027.
|
| [30] |
KIM M, KIM S, PARK J, et al. PartMix: Regularization strategy to learn part discovery for visible-infrared person re-identification[C]. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 18621–18632. doi: 10.1109/cvpr52729.2023.01786.
|
| [31] |
WEI Xianbin, SONG Kechen, YANG Wenkang, et al. A visible-infrared clothes-changing dataset for person re-identification in natural scene[J]. Neurocomputing, 2024, 569: 127110. doi: 10.1016/j.neucom.2023.127110.
|
| [32] |
LI Guanzhi, ZHANG Aining, ZHANG Qizhi, et al. Pearson correlation coefficient-based performance enhancement of broad learning system for stock price prediction[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(5): 2413–2417. doi: 10.1109/TCSII.2022.3160266.
|
| [33] |
LIU Gaqiong, HUANG Shucheng, WANG Gang, et al. Emrnet: Enhanced micro-expression recognition network with attention and distance correlation[J]. Artificial Intelligence Review, 2025, 58(6): 176. doi: 10.1007/s10462-025-11159-0.
|
| [34] |
CHUNG F R K. Spectral Graph Theory[M]. Providence: American Mathematical Society, 1997: 12–16.
|
| [35] |
YE Mang, SHEN Jianbing, LIN Gaojie, et al. Deep learning for person re-identification: A survey and outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6): 2872–2893. doi: 10.1109/TPAMI.2021.3054775.
|
| [36] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386.
|
| [37] |
周玉, 赵小锋, 汪一, 等. 关键细粒度信息指导的多尺度遮挡行人重识别[J]. 电子与信息学报, 2024, 46(6): 2578–2586. doi: 10.11999/JEIT230686.
ZHOU Yu, ZHAO Xiaofeng, WANG Yi, et al. Multi-scale occluded person re-identification guided by key fine-grained information[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2578–2586. doi: 10.11999/JEIT230686.
|
| [38] |
ZHANG Yukang and WANG Hanzi. Diverse embedding expansion network and low-light cross-modality benchmark for visible-infrared person re-identification[C]. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 2153–2162. doi: 10.1109/cvpr52729.2023.00214.
|
| [39] |
YU Mingxin, GE Yiyuan, CHEN Zhihao, et al. No escape: Towards suggestive clues guidance for cross-modality person re-identification[J]. Information Fusion, 2025, 122: 103185. doi: 10.1016/j.inffus.2025.103185.
|
| [40] |
ZHAO Qianqian, SU Jiajun, ZHU Jianqing, et al. Modality-consistent attention for visible-infrared vehicle re-identification[J]. IEEE Signal Processing Letters, 2024, 31: 1910–1914. doi: 10.1109/LSP.2024.3431920.
|