| Citation: | KONG Xiangyan, GAO YuLong, WANG Gang. Multimodal Pedestrian Trajectory Prediction with Multi-Scale Spatio-Temporal Group Modeling and Diffusion[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250900 |
| [1] |
李暾, 朱耀堃, 吴欣虹, 等. 基于卡口上下文和深度置信网络的车辆轨迹预测模型研究[J]. 电子与信息学报, 2021, 43(5): 1323–1330. doi: 10.11999/JEIT200137.
LI Tun, ZHU Yaokun, WU Xinhong, et al. Vehicle trajectory prediction method based on intersection context and deep belief network[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1323–1330. doi: 10.11999/JEIT200137.
|
| [2] |
THERESA W G, MADHIMITHRA R, and BHAVANA G. A hybrid RL-GNN approach for precise pedestrian trajectory prediction in autonomous navigation[C]. 8th International Conference on Trends in Electronics and Informatics, Tirunelveli, India, 2025: 1485–1490. doi: 10.1109/ICOEI65986.2025.11013272.
|
| [3] |
ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: Human trajectory prediction in crowded spaces[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 961–971. doi: 10.1109/CVPR.2016.110.
|
| [4] |
余浩扬, 李艳生, 肖凌励, 等. 面向动态环境的巡检机器人轻量级语义视觉SLAM框架[J]. 电子与信息学报, 2025, 47(10): 3979–3992. doi: 10.11999/JEIT250301.
YU Haoyang, LI Yansheng, XIAO Lingli, et al. A lightweight semantic visual simultaneous localization and mapping framework for inspection robots in dynamic environments[J]. Journal of Electronics & Information Technology, 2025, 47(10): 3979–3992. doi: 10.11999/JEIT250301.
|
| [5] |
WEI Xiaoge, LV Wei, SONG Weiguo, et al. Survey study and experimental investigation on the local behavior of pedestrian groups[J]. Complexity, 2015, 20(6): 87–97. doi: 10.1002/cplx.21633.
|
| [6] |
MOUSSAÏD M, PEROZO N, GARNIER S, et al. The walking behaviour of pedestrian social groups and its impact on crowd dynamics[J]. PLoS One, 2010, 5(4): e10047. doi: 10.1371/journal.pone.0010047.
|
| [7] |
霍如, 吕科呈, 黄韬. 车联网中路径预测驱动的任务切分与计算资源分配方法[J]. 电子与信息学报, 2025, 47(10): 3658–3669. doi: 10.11999/JEIT250135.
HUO Ru, LÜ Kecheng, and HUANG Tao. Task segmentation and computing resource allocation method driven by path prediction in internet of vehicles[J]. Journal of Electronics & Information Technology, 2025, 47(10): 3658–3669. doi: 10.11999/JEIT250135.
|
| [8] |
毛琳, 解云娇, 杨大伟, 等. 行人轨迹预测条件端点局部目的地池化网络[J]. 电子与信息学报, 2022, 44(10): 3465–3475. doi: 10.11999/JEIT210716.
MAO Lin, XIE Yunjiao, YANG Dawei, et al. Local destination pooling network for pedestrian trajectory prediction of condition endpoint[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3465–3475. doi: 10.11999/JEIT210716.
|
| [9] |
LIANG Junwei, JIANG Lu, MURPHY K, et al. The garden of forking paths: Towards multi-future trajectory prediction[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 10505–10515. doi: 10.1109/CVPR42600.2020.01052.
|
| [10] |
周传鑫, 简刚, 李凌书, 等. 融合兴趣点和联合损失函数的长时航迹预测模型[J]. 电子与信息学报, 2025, 47(8): 2841–2849. doi: 10.11999/JEIT250011.
ZHOU Chuanxin, JIAN Gang, LI Lingshu, et al. Long-term trajectory prediction model based on points of interest and joint loss function[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2841–2849. doi: 10.11999/JEIT250011.
|
| [11] |
HELBING D and MOLNÁR P. Social force model for pedestrian dynamics[J]. Physical Review E, 1995, 51(5): 4282–4286. doi: 10.1103/PhysRevE.51.4282.
|
| [12] |
SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61–80. doi: 10.1109/TNN.2008.2005605.
|
| [13] |
WU Zonghan, PAN Shirui, CHEN Fengwen, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4–24. doi: 10.1109/TNNLS.2020.2978386.
|
| [14] |
WANG Chenyue and WANG Dongyu. Advancing federated learning in IoV: GNN-based trajectory prediction and privacy protection[C]. 2025 IEEE Wireless Communications and Networking Conference, Milan, Italy, 2025: 1–6. doi: 10.1109/WCNC61545.2025.10978319.
|
| [15] |
BAE I, PARK J H, and JEON H G. Learning pedestrian group representations for multi-modal trajectory prediction[C]. 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 270–289. doi: 10.1007/978-3-031-20047-2_16.
|
| [16] |
MOUSSAÏD M, PEROZO N, GARNIER S, et al. The walking behaviour of pedestrian social groups and its impact on crowd dynamics[J]. PLoS One, 2010, 5(4): e10047. doi: 10.1371/journal.pone.0010047.(查阅网上资料,本条文献与第6条文献重复,请确认).
|
| [17] |
XU Chenxin, LI Maosen, NI Zhenyang, et al. GroupNet: Multiscale hypergraph neural networks for trajectory prediction with relational reasoning[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 6488–6497. doi: 10.1109/CVPR52688.2022.00639.
|
| [18] |
ZHANG Yuzhen, SU Junning, GUO Hang, et al. S-CVAE: Stacked CVAE for trajectory prediction with incremental greedy region[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(12): 20351–20363. doi: 10.1109/TITS.2024.3465836.
|
| [19] |
YANG Jiayu, LEE J J, and ANTONIOU C. Trajectory prediction for multiple agents in dynamic environments: Factoring in traffic states and driving styles[J]. IEEE Transactions on Intelligent Transportation Systems, 2025, 26(11): 19281–19295. doi: 10.1109/TITS.2025.3595743.
|
| [20] |
WEI Chuheng, WU Guoyuan, BARTH M J, et al. KI-GAN: Knowledge-informed generative adversarial networks for enhanced multi-vehicle trajectory forecasting at signalized intersections[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, USA, 2024: 7115–7124. doi: 10.1109/CVPRW63382.2024.00706.
|
| [21] |
CHEN Yanbo, YU Huilong, and XI Junqiang. STS-GAN: Spatial-temporal attention guided social GAN for vehicle trajectory prediction[C]. 16th International Symposium on Advanced Vehicle Control, Milan, Italy, 2024: 164–170. doi: 10.1007/978-3-031-70392-8_24.
|
| [22] |
GUPTA A, JOHNSON J, FEI-FEI L, et al. Social GAN: Socially acceptable trajectories with generative adversarial networks[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 2255–2264. doi: 10.1109/CVPR.2018.00240.
|
| [23] |
MOHAMED A, QIAN Kun, ELHOSEINY M, et al. Social-STGCNN: A social spatio-temporal graph convolutional neural network for human trajectory prediction[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 14412–14420. doi: 10.1109/CVPR42600.2020.01443.
|
| [24] |
HUANG Yingfan, BI Huikun, LI Zhaoxin, et al. STGAT: Modeling spatial-temporal interactions for human trajectory prediction[C]. The IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 6271–6280. doi: 10.1109/ICCV.2019.00637.
|
| [25] |
KIPF T N, FETAYA E, WANG K C, et al. Neural relational inference for interacting systems[C]. Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 2693–2702.
|
| [26] |
YU Cunjun, MA Xiao, REN Jiawei, et al. Spatio-temporal graph transformer networks for pedestrian trajectory prediction[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 507–523. doi: 10.1007/978-3-030-58610-2_30.
|
| [27] |
MANGALAM K, GIRASE H, AGARWAL S, et al. It is not the journey but the destination: Endpoint conditioned trajectory prediction[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 759–776. doi: 10.1007/978-3-030-58536-5_45.
|
| [28] |
HU Yue, CHEN Siheng, ZHANG Ya, et al. Collaborative motion prediction via neural motion message passing[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 6318–6327. doi: 10.1109/CVPR42600.2020.00635.
|
| [29] |
GU Tianpei, CHEN Guangyi, LI Junlong, et al. Stochastic trajectory prediction via motion indeterminacy diffusion[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 17092–17101. doi: 10.1109/CVPR52688.2022.01660.
|
| [30] |
SOHL-DICKSTEIN J, WEISS E A, MAHESWARANATHAN N, et al. Deep unsupervised learning using nonequilibrium thermodynamics[C]. Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015: 2256–2265.
|
| [31] |
SADEGHIAN A, KOSARAJU V, SADEGHIAN A, et al. SoPhie: An attentive GAN for predicting paths compliant to social and physical constraints[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1349–1358. doi: 10.1109/CVPR.2019.00144.
|
| [32] |
SUN Jianhua, LI Yuxuan, FANG Haoshu, et al. Three steps to multimodal trajectory prediction: Modality clustering, classification and synthesis[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 13230–13239. doi: 10.1109/ICCV48922.2021.01300.
|
| [33] |
LIN Xiaotong, LIANG Tianming, LAI Jianhuang, et al. Progressive pretext task learning for human trajectory prediction[C]. 18th European Conference on Computer Vision, Milan, Italy, 2025: 197–214. doi: 10.1007/978-3-031-73404-5_12.
|
| [34] |
LI Linhui, LIN Xiaotong, HUANG Yejia, et al. Beyond minimum-of-N: Rethinking the evaluation and methods of pedestrian trajectory prediction[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(12): 12880–12893. doi: 10.1109/TCSVT.2024.3439128.
|
| [35] |
SALZMANN T, IVANOVIC B, CHAKRAVARTY P, et al. Trajectron++: Dynamically-feasible trajectory forecasting with heterogeneous data[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 683–700. doi: 10.1007/978-3-030-58523-5_40.
|