Advanced Search
Turn off MathJax
Article Contents
LIU Sicong, HE Ming, LI Chunbiao, HAN Wei, LIU Chengzhuo, XIA Hengyu. Complete Coverage Path Planning Algorithm Based on Rulkov-like Chaotic Mapping[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250887
Citation: LIU Sicong, HE Ming, LI Chunbiao, HAN Wei, LIU Chengzhuo, XIA Hengyu. Complete Coverage Path Planning Algorithm Based on Rulkov-like Chaotic Mapping[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250887

Complete Coverage Path Planning Algorithm Based on Rulkov-like Chaotic Mapping

doi: 10.11999/JEIT250887 cstr: 32379.14.JEIT250887
Funds:  National Natural Science Foundation of China, No. 62273356, National Talent Project of China, No.2022-JCJQ-ZQ-001, Provincial Primary Research and Development Plan, China, No.BE2021729, High-level Talent Innovation Project, China, No.KYZYJQJY2101, National Key Research and Development Program of China 2024YFF1401400
  • Received Date: 2025-09-09
  • Accepted Date: 2025-11-03
  • Rev Recd Date: 2025-11-03
  • Available Online: 2025-11-13
  •   Objective  This study proposes a novel complete coverage path planning (CCPP) algorithm based on a sine-constrained Rolkov-like hyper-chaotic (SRHC) mapping, addressing critical challenges in robotic path planning. The research focuses on enhancing coverage efficiency, path unpredictability, and obstacle adaptability for mobile robots in complex environments, such as disaster rescue, firefighting, and unknown terrain exploration. Traditional methods often suffer from predictable movement patterns, local optima traps, and inefficient backtracking, motivating the need for advanced solutions leveraging chaotic dynamics.  Methods  The SRHC-CCPP algorithm integrates: 1. SRHC Mapping A hyper-chaotic system with nonlinear coupling (Eq. 1) that generates highly unpredictable trajectories, validated via Lyapunov exponent analysis (Fig. 3a–b). Phase-space diagrams (Fig. 1) and parameter sensitivity studies (Table 1) confirm chaotic behavior under conditions like a=0.01a=0.01, b=1.3b=1.3. 2. Memory-Driven Exploration A dynamic visitation grid prioritizes uncovered regions, reducing redundancy (Algorithm 1). 3. Obstacle Handling Collision detection with normal vector reflection minimizes oscillations in cluttered environments (Fig. 4). Simulations employed a Mecanum-wheel robot model (Eq. 2) for omnidirectional mobility.  Results and Discussions  1. Efficiency: SRHC-CCPP achieved faster coverage and superior uniformity in both obstacle-free and obstructed scenarios (Fig. 56). The chaotic driver improved path diversity by 37% compared to rule-based methods. 2. Robustness: Demonstrated initial-value sensitivity and adaptability to environmental noise (Table 2). 3. Scalability: Low computational overhead enabled deployment in large-scale grids (>104 cells).  Conclusions  The SRHC-CCPP algorithm advances robotic path planning by: 1. Merging hyper-chaotic unpredictability with memory-guided efficiency, eliminating repetitive loops. 2. Offering real-time obstacle negotiation via adaptive reflection mechanics. 3. Providing a versatile framework for applications requiring high coverage reliability and dynamic responsiveness. Future work may explore multi-agent extensions and 3D environments.
  • loading
  • [1]
    AHURAKA F, MCNAMEE P, WANG Qixu, et al. Chaotic motion planning for mobile robots: Progress, challenges, and opportunities[J]. IEEE Access, 2023, 11: 134917–134939. doi: 10.1109/ACCESS.2023.3337371.
    [2]
    SHIVASHANKAR V, JAIN R, KUTER U, et al. Real-time planning for covering an initially-unknown spatial environment[C]. Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference, Palm Beach, USA, 2011: 63–68.
    [3]
    GRØTLI E I and JOHANSEN T A. Path planning for UAVs under communication constraints using SPLAT! And MILP[J]. Journal of Intelligent & Robotic Systems, 2012, 65(1/4): 265–282. doi: 10.1007/s10846-011-9619-8.
    [4]
    YAN Mingzhong and ZHU Daqi. An algorithm of complete coverage path planning for autonomous underwater vehicles[J]. Key Engineering Materials, 2011, 467/469: 1377–1385. doi: 10.4028/www.scientific.net/KEM.467-469.1377.
    [5]
    HERT S, TIWARI S, and LUMELSKY V. A terrain-covering algorithm for an AUV[M]. YUH J, URA T, and BEKEY G A. Underwater Robots. New York, USA: Springer, 1996: 17–45. doi: 10.1007/978-1-4613-1419-6_2.
    [6]
    PANG Bao, SONG Yong, ZHANG Chengjin, et al. A swarm robotic exploration strategy based on an improved random walk method[J]. Journal of Robotics, 2019, 2019: 6914212. doi: 10.1155/2019/6914212.
    [7]
    PANG Bao, QI Jiahui, ZHANG Chengjin, et al. Analysis of random walk models in swarm robots for area exploration[C]. Proceedings of 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 2019: 2484–2489. doi: 10.1109/ROBIO49542.2019.8961844.
    [8]
    PETAVRATZIS E, MOYSIS L, VOLOS C, et al. A chaotic path planning generator enhanced by a memory technique[J]. Robotics and Autonomous Systems, 2021, 143: 103826. doi: 10.1016/j.robot.2021.103826.
    [9]
    MOYSIS L, PETAVRATZIS E, VOLOS C, et al. A chaotic path planning generator based on logistic map and modulo tactics[J]. Robotics and Autonomous Systems, 2020, 124: 103377. doi: 10.1016/j.robot.2019.103377.
    [10]
    KVITKO D, RYBIN V, BAYAZITOV O, et al. Chaotic path-planning algorithm based on Courbage–Nekorkin artificial neuron model[J]. Mathematics, 2024, 12(6): 892. doi: 10.3390/math12060892.
    [11]
    SRIDHARAN K and AHMADABADI Z N. A multi-system chaotic path planner for fast and unpredictable online coverage of terrains[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 5268–5275. doi: 10.1109/LRA.2020.3007471.
    [12]
    NASR S, MEKKI H, and BOUALLEGUE K. A multi-scroll chaotic system for a higher coverage path planning of a mobile robot using flatness controller[J]. Chaos, Solitons & Fractals, 2019, 118: 366–375. doi: 10.1016/j.chaos.2018.12.002.
    [13]
    ROSALIE M, DANOY G, CHAUMETTE S, et al. Chaos-enhanced mobility models for multilevel swarms of UAVs[J]. Swarm and Evolutionary Computation, 2018, 41: 36–48. doi: 10.1016/j.swevo.2018.01.002.
    [14]
    GAO Mingsheng, LIU Yuxiang, and WEI Pengfei. Opposite and chaos searching genetic algorithm based for UAV path planning[C]. Proceedings of the 6th IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 2020: 2364–2369. doi: 10.1109/ICCC51575.2020.9345125.
    [15]
    VESLIN DIAZ E, SLAMA J, DUTRA M, et al. Trajectory tracking for robot manipulators using differential flatness[J]. Ingeniería e Investigación, 2011, 31(2): 84–90. doi: 10.15446/ing.investig.v31n2.23468.
    [16]
    LEVINE J. Analysis and Control of Nonlinear Systems: A Flatness-Based Approach[M]. Berlin, Heidelberg, Germany: Springer, 2009. doi: 10.1007/978-3-642-00839-9. (查阅网上资料,请补充引用页码).
    [17]
    MARKUS E D, AGEE J T, JIMOH A A, et al. Flatness based control of a 2 DOF single link flexible joint manipulator[C]. Proceedings of the 2nd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - SIMULTECH, Rome, Italy, 2012: 437–442. doi: 10.5220/0004061104370442.
    [18]
    MARKUS E D, AGEE J T, and JIMOH A A. Flat control of industrial robotic manipulators[J]. Robotics and Autonomous Systems, 2017, 87: 226–236. doi: 10.1016/j.robot.2016.10.009.
    [19]
    AL-RAEEI M. Applying fractional quantum mechanics to systems with electrical screening effects[J]. Chaos, Solitons & Fractals, 2021, 150: 111209. doi: 10.1016/j.chaos.2021.111209.
    [20]
    SEADAWY A R, ALI S, and RIZVI S T R. On modulation instability analysis and rogue waves in the presence of external potential: The (n + 1)-dimensional nonlinear Schrödinger equation[J]. Chaos, Solitons & Fractals, 2022, 161: 112374. doi: 10.1016/j.chaos.2022.112374.
    [21]
    RYBIN V, BUTUSOV D, BABKIN I, et al. Some properties of a discrete Lorenz system obtained by variable midpoint method and its application to chaotic signal modulation[J]. International Journal of Bifurcation and Chaos, 2024, 34(1): 2450009. doi: 10.1142/S0218127424500093.
    [22]
    CIRJULINA D, BABAJANS R, CAPLIGINS F, et al. Experimental study on Colpitts chaotic oscillator-based communication system application for the internet of things[J]. Applied Sciences, 2024, 14(3): 1180. doi: 10.3390/app14031180.
    [23]
    CHO S W, PARK H J, LEE H, et al. Coverage path planning for multiple unmanned aerial vehicles in maritime search and rescue operations[J]. Computers & Industrial Engineering, 2021, 161: 107612. doi: 10.1016/j.cie.2021.107612.
    [24]
    LUIS S Y, PERALTA F, CÓRDOBA A T, et al. An evolutionary multi-objective path planning of a fleet of ASVs for patrolling water resources[J]. Engineering Applications of Artificial Intelligence, 2022, 112: 104852. doi: 10.1016/j.engappai.2022.104852.
    [25]
    MOYSIS L, PETAVRATZIS E, VOLOS C, et al. A chaotic path planning generator based on logistic map and modulo tactics[J]. Robotics and Autonomous Systems, 2020, 124: 103377. doi: 10.1016/j.robot.2019.103377. (查阅网上资料,本条文献与第9条文献重复,请确认).
    [26]
    LIAN Jianfang, YU Wentao, XIAO Kui, et al. Cubic spline interpolation-based robot path planning using a chaotic adaptive particle swarm optimization algorithm[J]. Mathematical Problems in Engineering, 2020, 2020: 1849240. doi: 10.1155/2020/1849240.
    [27]
    SHAO Shikai, PENG Yu, HE Chenglong, et al. Efficient path planning for UAV formation via comprehensively improved particle swarm optimization[J]. ISA Transactions, 2020, 97: 415–430. doi: 10.1016/j.isatra.2019.08.018.
    [28]
    MOYSIS L, VOLOS C, PHAM V T, et al. Analysis of a hyperchaotic system with a hyperbolic sinusoidal nonlinearity and its application to area exploration using multiple autonomous robots[M]. VOLCHENKOV D and LUO A C J. New Perspectives on Nonlinear Dynamics and Complexity. Cham, Switzerland: Springer, 2023: 43–62. doi: 10.1007/978-3-030-97328-5_4.
    [29]
    LE A V, VO D T, DAT N T, et al. Complete coverage planning using deep reinforcement learning for polyiamonds-based reconfigurable robot[J]. Engineering Applications of Artificial Intelligence, 2024, 138: 109424. doi: 10.1016/j.engappai.2024.109424.
    [30]
    CHEN Bolei, ZHONG Ping, CUI Yongzheng, et al. EMExplorer: An episodic memory enhanced autonomous exploration strategy with Voronoi domain conversion and invalid action masking[J]. Complex & Intelligent Systems, 2023, 9(6): 7365–7379. doi: 10.1007/s40747-023-01144-x.
    [31]
    LI Jianyu, WANG Kezhi, CHEN Zonghai, et al. An improved RRT* path planning algorithm in dynamic environment[C]. Proceedings of the 21st Asian Simulation Conference on Methods and Applications for Modeling and Simulation of Complex Systems, Changsha, China, 2022: 301–313. doi: 10.1007/978-981-19-9195-0_25.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article views (28) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return