| Citation: | LU Di, WANG Zhen Fa. Design of a CNN Accelerator Based on Systolic Array Collaboration with Inter-Layer Fusion[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250867 |
| [1] |
SHAO Jie and CHENG Qiyu. E-FCNN for tiny facial expression recognition[J]. Applied Intelligence, 2021, 51(1): 549–559. doi: 10.1007/s10489-020-01855-5.
|
| [2] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. Proceedings of the 26th Annual Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1106–1114.
|
| [3] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015: 236–238. (查阅网上资料, 未找到本条文献页码, 请确认).
|
| [4] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Identity mappings in deep residual networks[C]. 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 630–645. doi: 10.1007/978-3-319-46493-0_38.
|
| [5] |
IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015: 448–456.
|
| [6] |
BAO Chun, XIE Tao, FENG Wenbin, et al. A power-efficient optimizing framework FPGA accelerator based on Winograd for YOLO[J]. IEEE Access, 2020, 8: 94307–94317. doi: 10.1109/ACCESS.2020.2995330.
|
| [7] |
YE Jinlin, LIU Yuhan, CHEN Haiyong, et al. Edge computing accelerator for real-time defect detection of photovoltaic panel on lightweight FPGAs[J]. IEEE Transactions on Instrumentation and Measurement, 2025, 74: 3001815. doi: 10.1109/TIM.2025.3563001.
|
| [8] |
ZHANG Chen, WANG Xin’an, YONG Shanshan, et al. An energy-efficient convolutional neural network processor architecture based on a systolic array[J]. Applied Sciences, 2022, 12(24): 12633. doi: 10.3390/app122412633.
|
| [9] |
XU Yuhua, LUO Jie, and SUN Wei. Flare: An FPGA-based full precision low power CNN accelerator with reconfigurable structure[J]. Sensors, 2024, 24(7): 2239. doi: 10.3390/s24072239.
|
| [10] |
ZHANG Yonghua, WANG Haojie, and PAN Zhenhua. An efficient CNN accelerator for pattern-compressed sparse neural networks on FPGA[J]. Neurocomputing, 2025, 611: 128700. doi: 10.1016/j.neucom.2024.128700.
|
| [11] |
HU Xianghong, FU Shansen, LIN Yuanmiao, et al. An FPGA-based bit-level weight sparsity and mixed-bit accelerator for neural networks[J]. Journal of Systems Architecture, 2025, 166: 103463. doi: 10.1016/j.sysarc.2025.103463.
|
| [12] |
LI Gang, LIU Zejian, LI Fanrong, et al. Block convolution: Toward memory-efficient inference of large-scale CNNs on FPGA[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(5): 1436–1447. doi: 10.1109/TCAD.2021.3082868.
|
| [13] |
PACINI T, RAPUANO E, DINELLI G, et al. A multi-cache system for on-chip memory optimization in FPGA-based CNN accelerators[J]. Electronics, 2021, 10(20): 2514. doi: 10.3390/electronics10202514.
|
| [14] |
OU Yaozhong, YU Weihan, UN K F, et al. A 119.64 GOPs/W FPGA-based ResNet50 mixed-precision accelerator using the dynamic DSP packing[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(5): 2554–2558. doi: 10.1109/TCSII.2024.3377356.
|
| [15] |
FUKUSHIMA Y, IIZUKA K, and AMANO H. Parallel implementation of CNN on multi-FPGA cluster[J]. IEICE Transactions on Information and Systems, 2023, E106. D(7): 1198–1208. doi: 10.1587/transinf.2022EDP7175.
|
| [16] |
ALWANI M, CHEN Han, FERDMAN M, et al. Fused-layer CNN accelerators[C]. 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Taipei, China, 2016: 1–12. doi: 10.1109/MICRO.2016.7783725.
|
| [17] |
陈云霁, 李玲, 赵永威, 等. 智能计算系统: 从深度学习到大模型[M]. 2版. 北京: 机械工业出版社, 2024: 256–257.
CHEN Yunji, LI Ling, ZHAO Yongwei, et al. AI Computing Systems[M]. 2nd ed. Beijing: China Machine Press, 2024: 256–257.
|
| [18] |
LIU Yanyi, DU Hang, WU Yin, et al. FPGA accelerated deep learning for industrial and engineering applications: Optimal design under resource constraints[J]. Electronics, 2025, 14(4): 703. doi: 10.3390/electronics14040703.
|