| Citation: | JIN Jing, WANG Feng. A Distributed Multi-Satellite Collaborative Framework for Remote Sensing Scene Classification[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250866 |
| [1] |
NIU Ziqing, CHENG Peirui, WANG Zhirui, et al. FCIL-MSN: A federated class-incremental learning method for multisatellite networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5626115. doi: 10.1109/TGRS.2024.3406817.
|
| [2] |
LI Daixun, XIE Weiying, LI Yunsong, et al. FedFusion: Manifold-driven federated learning for multi-satellite and multi-modality fusion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5500813. doi: 10.1109/TGRS.2023.3339522.
|
| [3] |
SONG Wanying, ZHANG Yingying, WANG Chi, et al. Remote sensing scene classification based on semantic-aware fusion network[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 2505805. doi: 10.1109/LGRS.2024.3470773.
|
| [4] |
LIU Quanyong, PENG Jiangtao, ZHANG Genwei, et al. Deep contrastive learning network for small-sample hyperspectral image classification[J]. Journal of Remote Sensing, 2023, 3: 0025. doi: 10.34133/remotesensing.0025.
|
| [5] |
MENG Shili, PANG Yong, HUANG Chengquan, et al. A multifactor weighting method for improved clear view compositing using all available Landsat 8 and sentinel 2 images in google earth engine[J]. Journal of Remote Sensing, 2023, 3: 0086. doi: 10.34133/remotesensing.0086.
|
| [6] |
LIU Shuaijun, LIU Jia, TAN Xiaoyue, et al. A hybrid spatiotemporal fusion method for high spatial resolution imagery: Fusion of Gaofen-1 and sentinel-2 over agricultural landscapes[J]. Journal of Remote Sensing, 2024, 4: 0159. doi: 10.34133/remotesensing.0159.
|
| [7] |
MEI Shaohui, LIAN Jiawei, WANG Xiaofei, et al. A comprehensive study on the robustness of deep learning-based image classification and object detection in remote sensing: Surveying and benchmarking[J]. Journal of Remote Sensing, 2024, 4: 0219. doi: 10.34133/remotesensing.0219.
|
| [8] |
张继贤, 顾海燕, 杨懿, 等. 高分辨率遥感影像智能解译研究进展与趋势[J]. 遥感学报, 2021, 25(11): 2198–2210. doi: 10.11834/jrs.20210382.
ZHANG Jixian, GU Haiyan, YANG Yi, et al. Research progress and trend of high-resolution remote sensing imagery intelligent interpretation[J]. National Remote Sensing Bulletin, 2021, 25(11): 2198–2210. doi: 10.11834/jrs.20210382.
|
| [9] |
LI Shaofan, DAI Mingjun, and LI Bingchun. MMPC-Net: Multigranularity and multiscale progressive contrastive learning neural network for remote sensing image scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 2502505. doi: 10.1109/LGRS.2024.3392214.
|
| [10] |
WANG Yuelei, WANG Zhirui, CHENG Peirui, et al. DCM: A distributed collaborative training method for the remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5605018. doi: 10.1109/TGRS.2023.3252544.
|
| [11] |
LI Jianzhao, GONG Maoguo, LIU Zaitian, et al. Toward multiparty personalized collaborative learning in remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4503616. doi: 10.1109/TGRS.2024.3370584.
|
| [12] |
XU Yonghao, BAI Tao, YU Weikang, et al. AI security for geoscience and remote sensing: Challenges and future trends[J]. IEEE Geoscience and Remote Sensing Magazine, 2023, 11(2): 60–85. doi: 10.1109/MGRS.2023.3272825.
|
| [13] |
BÜYÜKTAŞ B, SUMBUL G, and DEMIR B. Federated learning across decentralized and unshared archives for remote sensing image classification: A review[J]. IEEE Geoscience and Remote Sensing Magazine, 2024, 12(3): 64–80. doi: 10.1109/MGRS.2024.3415391.
|
| [14] |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C].The 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2017: 1273–1282.
|
| [15] |
YAN Jintao, CHEN Tan, SUN Yuxuan, et al. Dynamic scheduling for vehicle-to-vehicle communications enhanced federated learning[J]. IEEE Transactions on Wireless Communications, 2025, 24(11): 9373–9390. doi: 10.1109/TWC.2025.3573048.
|
| [16] |
ZHANG Xiaokang, ZHANG Boning, YU Weikang, et al. Federated deep learning with prototype matching for object extraction from very-high-resolution remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5603316. doi: 10.1109/TGRS.2023.3244136.
|
| [17] |
TANG Xiaochuan, YAN Xiaochuang, YUAN Xiaojun, et al. FedLD: Federated learning for privacy-preserving collaborative landslide detection[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 8003105. doi: 10.1109/LGRS.2024.3437743.
|
| [18] |
HOSSEINALIPOUR S, AZAM S S, BRINTON C G, et al. Multi-stage hybrid federated learning over large-scale D2D-enabled fog networks[J]. IEEE/ACM Transactions on Networking, 2022, 30(4): 1569–1584. doi: 10.1109/TNET.2022.3143495.
|
| [19] |
JIA Xingde. Wireless networks and random geometric graphs[C]. The 7th International Symposium on Parallel Architectures, Algorithms and Networks, Hong Kong, China, 2004: 575–579. doi: 10.1109/ISPAN.2004.1300540.
|
| [20] |
ZHU Guangxu, WANG Yong, and HUANG Kaibin. Broadband analog aggregation for low-latency federated edge learning[J]. IEEE Transactions on Wireless Communications, 2020, 19(1): 491–506. doi: 10.1109/TWC.2019.2946245.
|
| [21] |
AMIRI M M and GÜNDÜZ D. Federated learning over wireless fading channels[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3546–3557. doi: 10.1109/TWC.2020.2974748.
|
| [22] |
SUN Yuxuan, ZHOU Sheng, NIU Zhisheng, et al. Dynamic scheduling for over-the-air federated edge learning with energy constraints[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(1): 227–242. doi: 10.1109/JSAC.2021.3126078.
|
| [23] |
CHEN Tan, YAN Jintao, SUN Yuxuan, et al. Mobility accelerates learning: Convergence analysis on hierarchical federated learning in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2025, 74(1): 1657–1673. doi: 10.1109/TVT.2024.3466299.
|
| [24] |
YANG Yi and NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]. The 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, USA, 2010: 270–279. doi: 10.1145/1869790.1869829.
|
| [25] |
CHENG Gong, HAN Junwei, and LU Xiaoqiang. Remote sensing image scene classification: Benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865–1883. doi: 10.1109/JPROC.2017.2675998.
|
| [26] |
LI Tian, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks[C]. The 3rd Conference on Machine Learning and Systems, Austin, USA, 2020: 429–450.
|