| Citation: | FAN Yawen, WANG Xiang, YUE Zhen, YU Xiaofan. A Causality-Guided KAN Attention Framework for Brain Tumor Classification[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250865 |
| [1] |
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2024, 74(3): 229–263. doi: 10.3322/caac.21834.
|
| [2] |
MAHARJAN S, ALSADOON A, PRASAD P W C, et al. A novel enhanced softmax loss function for brain tumour detection using deep learning[J]. Journal of Neuroscience Methods, 2020, 330: 108520. doi: 10.1016/j.jneumeth.2019.108520.
|
| [3] |
BADŽA M M andBARJAKTAROVIĆ M Č. Classification of brain tumors from MRI images using a convolutional neural network[J]. Applied Sciences, 2020, 10(6): 1999. doi: 10.3390/app10061999.
|
| [4] |
张奕涵, 柏正尧, 尤逸琳, 等. 自适应模态融合双编码器MRI脑肿瘤分割网络[J]. 中国图象图形学报, 2024, 29(3): 768–781. doi: 10.11834/jig.230275.
ZHANG Yihan, BAI Zhengyao, YOU Yilin, et al. Adaptive modal fusion dual encoder MRI brain tumor segmentation network[J]. Journal of Image and Graphics, 2024, 29(3): 768–781. doi: 10.11834/jig.230275.
|
| [5] |
AFSHAR P, PLATANIOTIS K N, and MOHAMMADI A. Capsule networks for brain tumor classification based on MRI images and coarse tumor boundaries[C]. ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 2019: 1368–1372. doi: 10.1109/ICASSP.2019.8683759.
|
| [6] |
方超伟, 李雪, 李钟毓, 等. 基于双模型交互学习的半监督医学图像分割[J]. 自动化学报, 2023, 49(4): 805–819. doi: 10.16383/j.aas.c210667.
FANG Chaowei, LI Xue, LI Zhongyu, et al. Interactive dual-model learning for semi-supervised medical image segmentation[J]. Acta Automatica Sinica, 2023, 49(4): 805–819. doi: 10.16383/j.aas.c210667.
|
| [7] |
贾熹滨, 郭雄, 王珞, 等. 一种迭代边界优化的医学图像小样本分割网络[J]. 自动化学报, 2024, 50(10): 1988–2001. doi: 10.16383/j.aas.c220994.
JIA Xibin, GUO Xiong, WANG Luo, et al. A few-shot medical image segmentation network with iterative boundary refinement[J]. Acta Automatica Sinica, 2024, 50(10): 1988–2001. doi: 10.16383/j.aas.c220994.
|
| [8] |
SABOOR A, LI Jianping, Ul HAQ A, et al. DDFC: Deep learning approach for deep feature extraction and classification of brain tumors using magnetic resonance imaging in E-healthcare system[J]. Scientific Reports, 2024, 14(1): 6425. doi: 10.1038/s41598-024-56983-6.
|
| [9] |
CHAUDHARY Q U A, QURESHI S A, SADIQ T, et al. SAlexNet: Superimposed AlexNet using residual attention mechanism for accurate and efficient automatic primary brain tumor detection and classification[J]. Results in Engineering, 2025, 25: 104025. doi: 10.1016/j.rineng.2025.104025.
|
| [10] |
WANG Jian, LU Siyuan, WANG Shuihua, et al. RanMerFormer: Randomized vision transformer with token merging for brain tumor classification[J]. Neurocomputing, 2024, 573: 127216. doi: 10.1016/j.neucom.2023.127216.
|
| [11] |
SULTAN H H, SALEM N M, and AL-ATABANY W. Multi-classification of brain tumor images using deep neural network[J]. IEEE access, 2019, 7: 69215–69225. doi: 10.1109/ACCESS.2019.2919122.
|
| [12] |
DÍAZ-PERNAS F J, MARTÍNEZ-ZARZUELA M, ANTÓN-RODRÍGUEZ M, et al. A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network[J]. Healthcare, 2021, 9(2): 153. doi: 10.3390/healthcare9020153.
|
| [13] |
LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 9992–10002. doi: 10.1109/ICCV48922.2021.00986.
|
| [14] |
刘建明, 曹圣浩, 张志鹏. 融合视觉Mamba与自适应多尺度损失的医学图像分割[J]. 中国图象图形学报, 2026, 31(1): 335–348. doi: 10.11834/jig.250224.
LIU Jianming, CAO Shenghao, ZHANG Zhipeng. Medical image segmentation with vision mamba and adaptive multiscale loss fusion[J]. Journal of Image and Graphics, 2026, 31(1): 335–348. doi: 10.11834/jig.250224.
|
| [15] |
朱智勤, 孙梦薇, 齐观秋, 等. 融合频率自适应和特征变换的医学图像分割[J]. 中国图象图形学报, 2026, 31(1): 303–319. doi: 10.11834/jig.250100.
ZHU Zhiqin, SUN Mengwei, QI Guanqiu, et al. Frequency adaptation and feature transformation network for medical image segmentation[J]. Journal of Image and Graphics, 2026, 31(1): 303–319. doi: 10.11834/jig.250100.
|
| [16] |
LIU Ziming, WANG Yixuan, VAIDYA S, et al. KAN: Kolmogorov-Arnold networks[C]. The 13th International Conference on Learning Representations, Singapore, Singapore, 2024.
|
| [17] |
RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]. Proceedings of the 38th International Conference on Machine Learning, 2021: 8748–8763. (查阅网上资料, 未找到本条文献出版地, 请确认).
|
| [18] |
KANUNGO T, MOUNT D M, NETANYAHU N S, et al. An efficient k-means clustering algorithm: Analysis and implementation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 881–892. doi: 10.1109/TPAMI.2002.1017616.
|
| [19] |
SHAO Feifei, LUO Yawei, ZHANG Li, et al. Improving weakly supervised object localization via causal intervention[C]. Proceedings of the 29th ACM International Conference on Multimedia, 2021: 3321–3329. doi: 10.1145/3474085.3475485. (查阅网上资料,未找到本条文献出版地,请确认).
|
| [20] |
李锵, 王旭, 关欣. 一种结合三重注意力机制的双路径网络胸片疾病分类方法[J]. 电子与信息学报, 2023, 45(4): 1412–1425. doi: 10.11999/JEIT220172.
LI Qiang, WANG Xu, and GUAN Xin. A dual-path network chest film disease classification method combined with a triple attention mechanism[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1412–1425. doi: 10.11999/JEIT220172.
|
| [21] |
孙家阔, 张荣, 郭立君, 等. 多尺度特征融合与加性注意力指导脑肿瘤MR图像分割[J]. 中国图象图形学报, 2023, 28(4): 1157–1172. doi: 10.11834/jig.211073.
SUN Jiakuo, ZHANG Rong, GUO Lijun, et al. Multi-scale feature fusion and additive attention guide brain tumor MR image segmentation[J]. Journal of Image and Graphics, 2023, 28(4): 1157–1172. doi: 10.11834/jig.211073.
|
| [22] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 3–19. doi: 10.1007/978-3-030-01234-2_1.
|
| [23] |
CHENG Jun. Brain tumor dataset[EB/OL]. https://figshare.com/articles/dataset/brain_tumor_dataset/1512427, 2024.
|
| [24] |
REDDY C K K, REDDY P A, JANAPATI H, et al. A fine-tuned vision transformer based enhanced multi-class brain tumor classification using MRI scan imagery[J]. Frontiers in Oncology, 2024, 14: 1400341. doi: 10.3389/fonc.2024.1400341.
|
| [25] |
ALAM N, ZHU Yutong, SHAO Jiaqi, et al. A novel deep learning framework for brain tumor classification using improved Swin transformer V2[J]. ICCK Transactions on Advanced Computing and Systems, 2025, 1(3): 154–163. doi: 10.62762/tacs.2025.807755.
|
| [26] |
Haque R, Hassan M, Bairagi A K, et al. NeuroNet19: An explainable deep neural network model for the classification of brain tumors using magnetic resonance imaging data[J]. Scientific Reports, 2024, 14(1): 1524. doi: 10.1038/s41598-024-51867-1.
|
| [27] |
KARAGOZ M A, NALBANTOGLU O U, and FOX G C. Residual vision transformer (ResViT) based self-supervised learning model for brain tumor classification[EB/OL]. https://arxiv.org/abs/2411.12874, 2024.
|
| [28] |
WU Kan, ZHANG Jinnian, PENG Houwen, et al. TinyViT: Fast pretraining distillation for small vision transformers[C]. 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 68–85. doi: 10.1007/978-3-031-19803-8_5.
|
| [29] |
GRAHAM B, EL-NOUBY A, TOUVRON H, et al. LeViT: A vision transformer in ConvNet's clothing for faster inference[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 12239–12249. doi: 10.1109/ICCV48922.2021.01204.
|
| [30] |
QIN Danfeng, LEICHNER C, DELAKIS M, et al. MobileNetV4: Universal models for the mobile ecosystem[C]. 18th European Conference on Computer Vision, Milan, Italy, 2024: 78–96. doi: 10.1007/978-3-031-73661-2_5.
|
| [31] |
GÓMEZ-GUZMÁN M A, JIMÉNEZ-BERISTAÍN L, GARCÍA-GUERRERO E E, et al. Classifying brain tumors on magnetic resonance imaging by using convolutional neural networks[J]. Electronics, 2023, 12(4): 955. doi: 10.3390/electronics12040955.
|
| [32] |
DAS S, GHOSH P, and CHAUDHURI A K. Segmentation and classification of specific pattern of Brain tumor using CNN[J]. International Journal of Engineering Technology and Management Sciences, 2023, 7(2): 21–29. doi: 10.46647/ijetms.2023.v07i02.004.
|
| [33] |
RAOUF M H G, FALLAH A, and RASHIDI S. Use of discrete cosine-based stockwell transform in the binary classification of magnetic resonance images of brain tumor[C]. 2022 29th National and 7th International Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, Islamic Republic of, 2022: 293–298. doi: 10.1109/ICBME57741.2022.10052875.
|
| [34] |
ELHADIDY M S, ELGOHR A T, EL-GENEEDY M, et al. Comparative analysis for accurate multi-classification of brain tumor based on significant deep learning models[J]. Computers in Biology and Medicine, 2025, 188: 109872. doi: 10.1016/j.compbiomed.2025.109872.
|
| [35] |
DUTTA T K, NAYAK D R, and ZHANG Yudong. ARM-Net: Attention-guided residual multiscale CNN for multiclass brain tumor classification using MR images[J]. Biomedical Signal Processing and Control, 2024, 87: 105421. doi: 10.1016/j.bspc.2023.105421.
|
| [36] |
DUTTA T K, NAYAK D R, and PACHORI R B. GT-Net: Global transformer network for multiclass brain tumor classification using MR images[J]. Biomedical Engineering Letters, 2024, 14(5): 1069–1077. doi: 10.1007/s13534-024-00393-0.
|
| [37] |
GHASSEMI N, SHOEIBI A, and ROUHANI M. Deep neural network with generative adversarial networks pre-training for brain tumor classification based on MR images[J]. Biomedical Signal Processing and Control, 2020, 57: 101678. doi: 10.1016/j.bspc.2019.101678.
|
| [38] |
DEEPAK S and AMEER P M. Brain tumor classification using deep CNN features via transfer learning[J]. Computers in Biology and Medicine, 2019, 111: 103345. doi: 10.1016/j.compbiomed.2019.103345.
|
| [39] |
RIZWAN M, SHABBIR A, JAVED A R, et al. Brain tumor and glioma grade classification using Gaussian convolutional neural network[J]. IEEE Access, 2022, 10: 29731–29740. doi: 10.1109/ACCESS.2022.3153108.
|
| [40] |
HAQ A U, LI Jianping, KHAN S, et al. DACBT: Deep learning approach for classification of brain tumors using MRI data in IoT healthcare environment[J]. Scientific Reports, 2022, 12(1): 15331. doi: 10.1038/s41598-022-19465-1.
|
| [41] |
GAB ALLAH A M, SARHAN A M, and ELSHENNAWY N M. Classification of brain MRI tumor images based on deep learning PGGAN augmentation[J]. Diagnostics, 2021, 11(12): 2343. doi: 10.3390/diagnostics11122343.
|
| [42] |
SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9. doi: 10.1109/CVPR.2015.7298594.
|
| [43] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]. Proceedings of the 9th International Conference on Learning Representations, Vienna, Austria, 2020. (查阅网上资料, 未找到本条文献页码信息, 请确认).
|
| [44] |
VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579–2605.
|