| Citation: | SU Rongjin, FANG Gang, ZHU Enqiang, XU Jin. Total Coloring on Planar Graphs of Nested n-Pointed Stars[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250861 |
| [1] |
BEHZAD M. Graphs and their chromatic numbers[D]. [Ph. D. dissertation], Michigan State University, 1965.
|
| [2] |
VIZING V G. Some unsolved problems in graph theory[J]. Russian Mathematical Surveys, 1968, 23(6): 125–141. doi: 10.1070/RM1968v023n06ABEH001252.
|
| [3] |
ROSENFELD M. On the total coloring of certain graphs[J]. Israel Journal of Mathematics, 1971, 9(3): 396–402. doi: 10.1007/BF02771690.
|
| [4] |
VIJAYADITYA N. On total chromatic number of a graph[J]. Journal of the London Mathematical Society, 1971, s2-3(3): 405–408. doi: 10.1112/jlms/s2-3.3.405.
|
| [5] |
KOSTOCHKA A V. The total coloring of a multigraph with maximal degree 4[J]. Discrete Mathematics, 1977, 17(2): 161–163. doi: 10.1016/0012-365X(77)90146-7.
|
| [6] |
KOSTOCHKA A V. The total chromatic number of any multigraph with maximum degree five is at most seven[J]. Discrete Mathematics, 1996, 162(1/3): 199–214. doi: 10.1016/0012-365X(95)00286-6.
|
| [7] |
DALAL A, MCDONALD J, and SHAN S L. Total coloring graphs with large maximum degree[J]. Journal of Graph Theory, 2025, 110(3): 249–262. doi: 10.1002/jgt.23268.
|
| [8] |
COUTO F, FERRAZ D A, and KLEIN S. New results on edge-coloring and total-coloring of split graphs[J]. Discrete Applied Mathematics, 2025, 360: 297–306. doi: 10.1016/j.dam.2024.09.008.
|
| [9] |
DALAL A and PANDA B S. On total chromatic number of complete multipartite graphs[J]. Discrete Applied Mathematics, 2025, 377: 445–458. doi: 10.1016/j.dam.2025.08.027.
|
| [10] |
PUNITHA A and JAYARAMAN G. On total coloring of triple star and lobster graphs[J]. Communications on Applied Nonlinear Analysis, 2024, 31(8s): 494–504. doi: 10.52783/cana.v31.1543.
|
| [11] |
KAVASKAR T and SUKUMARAN S. Total coloring of some graph operations[C]. Proceedings of the 10th International Conference on Algorithms and Discrete Applied Mathematics, Bhilai, India, 2024: 302–312. doi: 10.1007/978-3-031-52213-0_21.
|
| [12] |
PUNITHA A and JAYARAMAN G. Total coloring of middle graph of certain snake graph families[J]. Journal of Applied Mathematics & Informatics, 2024, 42(2): 353–366. doi: 10.14317/jami.2024.353.
|
| [13] |
KAVASKAR T and SUKUMARAN S. Total coloring of the generalized corona product of graphs[J]. Studia Scientiarum Mathematicarum Hungarica, 2025, 62(1): 1. doi: 10.1556/012.2025.04326.
|
| [14] |
BORODIN O V. On the total coloring of planar graphs[J]. Journal für die reine und angewandte Mathematik, 1989, 1989(394): 180–185. doi: 10.1515/crll.1989.394.180.
|
| [15] |
KOWALIK Ł, SERENI J S, and ŠKREKOVSKI R. Total-coloring of plane graphs with maximum degree nine[J]. SIAM Journal on Discrete Mathematics, 2008, 22(4): 1462–1479. doi: 10.1137/070688389.
|
| [16] |
YAP H P. Total Colourings of Graphs[M]. Berlin, Heidelberg: Springer, 2006: 96–103. doi: 10.1007/BFb0092895.
|
| [17] |
XU Renyu and WU Jianliang. Total coloring of planar graphs with 7-cycles containing at most two chords[J]. Theoretical Computer Science, 2014, 520: 124–129. doi: 10.1016/j.tcs.2013.08.019.
|
| [18] |
SANDERS D P and ZHAO Yue. On total 9-coloring planar graphs of maximum degree seven[J]. Journal of Graph Theory, 1999, 31(1): 67–73. doi: 10.1002/(SICI)1097-0118(199905)31:1<67::AID-JGT6>3.0.CO;2-C.
|
| [19] |
CAI Hua. Total coloring of planar graphs without chordal 7-cycles[J]. Acta Mathematica Sinica, English Series, 2015, 31(12): 1951–1962. doi: 10.1007/s10114-015-4337-y.
|
| [20] |
WANG Yingqian, SHANGGUAN M L, and LI Qiao. On total chromatic number of planar graphs without 4-cycles[J]. Science in China Series A: Mathematics, 2007, 50(1): 81–86. doi: 10.1007/s11434-007-2031-x.
|
| [21] |
SHEN Lan and WANG Yingqian. On the 7 total colorability of planar graphs with maximum degree 6 and without 4-cycles[J]. Graphs and Combinatorics, 2009, 25(3): 401–407. doi: 10.1007/s00373-009-0843-y.
|
| [22] |
SUN Xiangyong, WU Jianliang, WU Yuwen, et al. Total colorings of planar graphs without adjacent triangles[J]. Discrete Mathematics, 2009, 309(1): 202–206. doi: 10.1016/j.disc.2007.12.071.
|
| [23] |
ZHU Enqiang and XU Jin. A sufficient condition for planar graphs with maximum degree 6 to be totally 8-colorable[J]. Discrete Applied Mathematics, 2017, 223: 148–153. doi: 10.1016/j.dam.2017.01.036.
|
| [24] |
CHANG Yulin, JING Fei, WANG Guanghui, et al. Total-coloring of sparse graphs with maximum degree 6[J]. Acta Mathematicae Applicatae Sinica, English Series, 2021, 37(4): 738–746. doi: 10.1007/s10255-021-1039-3.
|
| [25] |
ZHU Enqiang and RAO Yongsheng. A sufficient condition for planar graphs of maximum degree 6 to be totally 7-colorable[J]. Discrete Dynamics in Nature and Society, 2020, 2020(1): 3196540. doi: 10.1155/2020/3196540.
|
| [26] |
GEETHA J, NARAYANAN N, and SOMASUNDARAM K. Total colorings-a survey[J]. AKCE International Journal of Graphs and Combinatorics, 2023, 20(3): 339–351. doi: 10.1080/09728600.2023.2187960.
|