| Citation: | HUI Zhanqiang, ZHANG Xinglong, HAN dongdong, LI Tiantian, GONG Jiamin. Inverse Design of a Silicon-Based Compact Polarization Splitter-Rotator[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250858 |
| [1] |
WANG Jian and LONG Yun. On-chip silicon photonic signaling and processing: A review[J]. Science Bulletin, 2018, 63(19): 1267–1310. doi: 10.1016/j.scib.2018.05.038.
|
| [2] |
CONRADI H, DE FELIPE D, KLEINERT M, et al. Hybrid integration of a polarization independent optical circulator[C]. Proceedings Volume 11283, Integrated Optics: Devices, Materials, and Technologies XXIV, San Francisco, United States, 2020: 39–45. doi: 10.1117/12.2545592.
|
| [3] |
GAO Linfei, HUO Yijie, HARRIS J S, et al. Ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide[J]. IEEE Photonics Technology Letters, 2013, 25(21): 2081–2084. doi: 10.1109/LPT.2013.2281425.
|
| [4] |
ZHAO Yingxuan, QIU Chao, WU Aimin, et al. Broadband polarization splitter-rotator and the application in WDM receiver[J]. IEEE Photonics Journal, 2019, 11(1): 6600310. doi: 10.1109/JPHOT.2018.2886268.
|
| [5] |
TAN Ying, WU Hao, and DAI Daoxin. Silicon-based hybrid (de)multiplexer for wavelength-/polarization-division-multiplexing[J]. Journal of Lightwave Technology, 2018, 36(11): 2051–2058. doi: 10.1109/JLT.2017.2771352.
|
| [6] |
DAI Daoxin, LIU Liu, GAO Shiming, et al. Polarization management for silicon photonic integrated circuits[J]. Laser & Photonics Reviews, 2013, 7(3): 303–328. doi: 10.1002/lpor.201200023.
|
| [7] |
ZAFAR H and PEREIRA M F. Recent progress in light polarization control schemes for silicon integrated photonics[J]. Laser & Photonics Reviews, 2024, 18(11): 2301025. doi: 10.1002/lpor.202301025.
|
| [8] |
SHAHWAR D, YOON H H, AKKANEN S T, et al. Polarization management in silicon photonics[J]. npj Nanophotonics, 2024, 1(1): 35. doi: 10.1038/s44310-024-00033-6.
|
| [9] |
HUANG Jie, YANG Junbo, CHEN Dingbo, et al. Ultra-compact broadband polarization beam splitter with strong expansibility[J]. Photonics Research, 2018, 6(6): 574–578. doi: 10.1364/PRJ.6.000574.
|
| [10] |
GAN Ranfeng, QI Lu, RUAN Ziliang, et al. Fabrication tolerant and broadband polarization splitter-rotator based on adiabatic mode evolution on thin-film lithium niobate[J]. Optics Letters, 2022, 47(19): 5200–5203. doi: 10.1364/OL.470216.
|
| [11] |
CHUNG K F, SHIH Y T, MA Yiren, et al. Broadband ultra-compact polarization splitter–rotator using diagonally overlapped bi-layer architecture[J]. Applied Optics, 2022, 61(27): 8064–8071. doi: 10.1364/AO.470750.
|
| [12] |
XIE Changjian, ZOU Xihua, LI Peixuan, et al. Ultracompact silicon polarization splitter-rotator using a dual-etched and tapered coupler[J]. Applied Optics, 2020, 59(30): 9540–9547. doi: 10.1364/AO.404741.
|
| [13] |
CHEN Jingyuan and XIAO Jinbiao. Ultracompact silicon-based polarization splitter and rotator based on asymmetric directional couplers with subwavelength gratings[J]. Journal of the Optical Society of America B, 2022, 39(1): 345–354. doi: 10.1364/JOSAB.447359.
|
| [14] |
ZHANG Yong, HE Yu, JIANG Xinhong, et al. Ultra-compact and highly efficient silicon polarization splitter and rotator[J]. APL Photonics, 2016, 1(9): 091304. doi: 10.1063/1.4965832.
|
| [15] |
SUN Chunlei, YU Yu, CHEN Guanyu, et al. A low crosstalk and broadband polarization rotator and splitter based on adiabatic couplers[J]. IEEE Photonics Technology Letters, 2016, 28(20): 2253–2256. doi: 10.1109/LPT.2016.2591621.
|
| [16] |
CHUNG H C and TSENG S Y. Ultrashort and broadband silicon polarization splitter-rotator using fast quasiadiabatic dynamics[J]. Optics Express, 2018, 26(8): 9655–9665. doi: 10.1364/OE.26.009655.
|
| [17] |
CHEN Zhaoxi, YANG Jingwei, WONG W H, et al. Broadband adiabatic polarization rotator-splitter based on a lithium niobate on insulator platform[J]. Photonics Research, 2021, 9(12): 2319–2324. doi: 10.1364/PRJ.432906.
|
| [18] |
XU Hongnan and SHI Yaocheng. Ultra-broadband silicon polarization splitter-rotator based on the multi-mode waveguide[J]. Optics Express, 2017, 25(15): 18485–18491. doi: 10.1364/OE.25.018485.
|
| [19] |
MA Minglei, PARK A H K, WANG Yun, et al. Sub-wavelength grating-assisted polarization splitter-rotators for silicon-on-insulator platforms[J]. Optics Express, 2019, 27(13): 17581–17591. doi: 10.1364/OE.27.017581.
|
| [20] |
SHEN Yuan, RUAN Ziliang, CHEN Kaixuan, et al. Broadband polarization splitter-rotator on a thin-film lithium niobate with conversion-enhanced adiabatic tapers[J]. Optics Express, 2023, 31(2): 1354–1366. doi: 10.1364/OE.481652.
|
| [21] |
WANG MengKe, YAO Hao, DENG Jiayao, et al. Polarization splitter-rotator on thin film lithium niobate based on multimode interference[J]. Optics Express, 2024, 32(16): 28175–28182. doi: 10.1364/OE.530883.
|
| [22] |
WANG Shumeng, LI Peng, and YAN Jize. Monolithically integrated polarization rotator and splitter with designed power ratio[J]. Optics Express, 2023, 31(9): 14128–14139. doi: 10.1364/OE.488419.
|
| [23] |
TAHERSIMA M H, KOJIMA K, KOIKE-AKINO T, et al. Deep neural network inverse design of integrated photonic power splitters[J]. Scientific Reports, 2019, 9(1): 1368. doi: 10.1038/s41598-018-37952-2.
|
| [24] |
DENG Xuyu, SUN Aolong, YI Qiyuan, et al. Inverse design of a wavelength (de)multiplexer for 1.55- and 2-μm wavebands by using a hybrid analog-digital method[J]. Journal of Lightwave Technology, 2024, 42(15): 5231–5240. doi: 10.1109/JLT.2024.3386668.
|
| [25] |
HAN Jingmin, HUANG Jie, WU Jiagui, et al. Inverse designed tunable four-channel wavelength demultiplexer[J]. Optics Communications, 2020, 465: 125606. doi: 10.1016/j.optcom.2020.125606.
|
| [26] |
ZHAO Zhikai, JIANG Yongheng, DENG Yubo, et al. Ultra-compact dual-wavelength-dual-mode (de)multiplexer utilizing topology optimization[C]. 2023 IEEE 2nd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), Changchun, China, 2023: 625–628. doi: 10.1109/EEBDA56825.2023.10090624.
|
| [27] |
JIANG Weifeng, MAO Siqiang, and HU Jinzhu. Ultra-compact silicon mode (de) multiplexer using inverse-designed adiabatic coupler[J]. Journal of Lightwave Technology, 2024, 42(5): 1573–1579. doi: 10.1109/JLT.2023.3323332.
|
| [28] |
LU Qichao, YAN Xin, WEI Wei, et al. High-speed ultra-compact all-optical NOT and AND logic gates designed by a multi-objective particle swarm optimized method[J]. Optics & Laser Technology, 2019, 116: 322–327. doi: 10.1016/j.optlastec.2019.03.032.
|
| [29] |
LIU Yuxiao, LI Hongxiang, CHEN Weiwei, et al. Direct-binary-search-optimized compact silicon-based polarization beam splitter using a pixelated directional coupler[J]. Optics Communications, 2021, 484: 126670. doi: 10.1016/j.optcom.2020.126670.
|
| [30] |
XU Haoda, TIAN Ye, LI Yan, et al. Inverse design of highly-efficient and broadband polarization beam splitter on SOI platform[J]. Optics Communications, 2024, 572: 130986. doi: 10.1016/j.optcom.2024.130986.
|
| [31] |
LIU Yingjie, WANG Shuai, WANG Yujie, et al. Subwavelength polarization splitter–rotator with ultra-compact footprint[J]. Optics Letters, 2019, 44(18): 4495–4498. doi: 10.1364/OL.44.004495.
|
| [32] |
PERESTJUK M, BOERMA H, SCHINDLER A, et al. Inverse-designed InP-based polarization rotator-splitter[C]. Optical Fiber Communication Conference (OFC) 2021, Washington, United States, 2021: W6A. 49. doi: 10.1364/OFC.2021.W6A.49.
|
| [33] |
LALAU-KERALY C M, BHARGAVA S, MILLER O D, et al. Adjoint shape optimization applied to electromagnetic design[J]. Optics Express, 2013, 21(18): 21693–21701. doi: 10.1364/OE.21.021693.
|
| [34] |
KANG C, SEO D, BORISKINA S V, et al. Adjoint method in machine learning: A pathway to efficient inverse design of photonic devices[J]. Materials & Design, 2024, 239: 112737. doi: 10.1016/j.matdes.2024.112737.
|
| [35] |
GIVOLI D. A tutorial on the adjoint method for inverse problems[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 380: 113810. doi: 10.1016/j.cma.2021.113810.
|
| [36] |
XU Jiefeng, WANG Xi, WU Yifan, et al. Topology optimization of a broadband and fabrication-friendly polarization splitter-rotator on silicon platform[C]. CLEO: Applications and Technology 2023, San Jose, United States, 2023: JW2A. 18. doi: 10.1364/CLEO_AT.2023.JW2A.18.
|
| [37] |
WANG Shumeng, LI Peng, and YAN Jize. Monolithically integrated polarization rotator and splitter with designed power ratio[J]. Optics Express, 2023, 31(9): 14128–14139. doi: 10.1364/OE.488419. (查阅网上资料,本条文献与第22条文献重复,请确认).
|
| [38] |
XIAO Haosheng, YE Feng, FU H Y, et al. Topology optimization for a broadband polarization splitter-rotator based on lithium niobate-on-insulator[C]. 2025 30th OptoElectronics and Communications Conference (OECC) and 2025 International Conference on Photonics in Switching and Computing (PSC), Sapporo, Japan, 2025: 1–3. doi: 10.23919/OECC/PSC62146.2025.11111459.
|
| [39] |
JENSEN J S and SIGMUND O. Topology optimization for nano‐photonics[J]. Laser & Photonics Reviews, 2011, 5(2): 308–321. doi: 10.1002/lpor.201000014.
|
| [40] |
WANG Kaiyuan, REN Xinshu, CHANG Weijie, et al. Inverse design of digital nanophotonic devices using the adjoint method[J]. Photonics Research, 2020, 8(4): 528–533. doi: 10.1364/PRJ.383887.
|
| [41] |
YUAN Wei, HU Fei, and LU Liangfu. A new non-adaptive optimization method: Stochastic gradient descent with momentum and difference[J]. Applied Intelligence, 2022, 52(4): 3939–3953. doi: 10.1007/s10489-021-02224-6.
|
| [42] |
SU Logan, PIGGOTT A Y, SAPRA N V, et al. Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer[J]. ACS Photonics, 2018, 5(2): 301–305. doi: 10.1021/acsphotonics.7b00987.
|
| [43] |
RUAN Xiaoke, LI Hao, and CHU Tao. Inverse-designed ultra-compact polarization splitter–rotator in standard silicon photonic platforms with large fabrication tolerance[J]. Journal of Lightwave Technology, 2022, 40(21): 7142–7149. doi: 10.1109/JLT.2022.3199427.
|
| [44] |
CHEN Houyu, WANG Yinghui, MAO Simei, et al. Integrating inverse design and partially etched platform: An ultra-compact polarization splitter and rotator as an example[J]. Applied Optics, 2024, 63(12): 3178–3185. doi: 10.1364/AO.521930.
|
| [45] |
GUO Defen and CHU Tao. Broadband and low-crosstalk polarization splitter-rotator with optimized tapers[J]. OSA Continuum, 2018, 1(3): 841–850. doi: 10.1364/OSAC.1.000841.
|
| [46] |
HUNG Y J, CHEN C H, CHUNG H C, et al. Compact and broadband silicon polarization splitter–rotator using adiabaticity engineering[J]. Optics Letters, 2024, 49(7): 1852–1855. doi: 10.1364/OL.518607.
|
| [47] |
YU Kan, WANG Lijun, WU Wenhao, et al. Demonstration of an on-chip broadband polarization splitter and rotator using counter-tapered coupler[J]. Optics Communications, 2019, 431: 58–62. doi: 10.1016/j.optcom.2018.09.015.
|