| [1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209–249. doi: 10.3322/caac.21660.
|
| [2] |
MARTIN J, PETRILLO A, SMYTH E C, et al. Colorectal liver metastases: Current management and future perspectives[J]. World Journal of Clinical Oncology, 2020, 11(10): 761–808. doi: 10.5306/wjco.v11.i10.761.
|
| [3] |
REBOUX N, JOOSTE V, GOUNGOUNGA J, et al. Incidence and survival in synchronous and metachronous liver metastases from colorectal cancer[J]. JAMA Network Open, 2022, 5(10): e2236666. doi: 10.1001/jamanetworkopen.2022.36666.
|
| [4] |
VALDERRAMA-TREVIÑO A I, BARRERA-MERA B, CEBALLOS-VILLALVA J C, et al. Hepatic metastasis from colorectal cancer[J]. Euroasian Journal of Hepato-Gastroenterology, 2017, 7(2): 166–175. doi: 10.5005/jp-journals-10018-1241.
|
| [5] |
ZEINEDDINE F A, ZEINEDDINE M A, YOUSEF A, et al. Survival improvement for patients with metastatic colorectal cancer over twenty years[J]. npj Precision Oncology, 2023, 7(1): 16. doi: 10.1038/s41698-023-00353-4.
|
| [6] |
LAN Y T, JIANG J K, CHANG S C, et al. Improved outcomes of colorectal cancer patients with liver metastases in the era of the multidisciplinary teams[J]. International Journal of Colorectal Disease, 2016, 31(2): 403–411. doi: 10.1007/s00384-015-2459-4.
|
| [7] |
TOPOL E J. High-performance medicine: The convergence of human and artificial intelligence[J]. Nature Medicine, 2019, 25(1): 44–56. doi: 10.1038/s41591-018-0300-7.
|
| [8] |
THIRUNAVUKARASU A J, TING D S J, ELANGOVAN K, et al. Large language models in medicine[J]. Nature Medicine, 2023, 29(8): 1930–1940. doi: 10.1038/s41591-023-02448-8.
|
| [9] |
SINGHAL K, AZIZI S, TU Tao, et al. Large language models encode clinical knowledge[J]. Nature, 2023, 620(7972): 172–180. doi: 10.1038/s41586-023-06291-2.
|
| [10] |
MESKÓ B and GÖRÖG M. A short guide for medical professionals in the era of artificial intelligence[J]. npj Digital Medicine, 2020, 3: 126. doi: 10.1038/s41746-020-00333-z.
|
| [11] |
PARK Y E and CHAE H. The fidelity of artificial intelligence to multidisciplinary tumor board recommendations for patients with gastric cancer: A retrospective study[J]. Journal of Gastrointestinal Cancer, 2024, 55(1): 365–372. doi: 10.1007/s12029-023-00967-8.
|
| [12] |
HORESH N, EMILE S H, GUPTA S, et al. Comparing the management recommendations of large language model and colorectal cancer multidisciplinary team: A pilot study[J]. Diseases of the Colon & Rectum, 2025, 68(1): 41–47. doi: 10.1097/DCR.0000000000003504.
|
| [13] |
CHOO J M, RYU H S, KIM J S, et al. Conversational artificial intelligence (chatGPT™) in the management of complex colorectal cancer patients: Early experience[J]. ANZ Journal of Surgery, 2024, 94(3): 356–361. doi: 10.1111/ans.18749.
|
| [14] |
UMIHANIC S, OSMANOVIC H, SELAK N, et al. Evaluating the concordance between ChatGPT and multidisciplinary teams in breast cancer treatment planning: A study from Bosnia and Herzegovina[J]. Journal of Clinical Medicine, 2025, 14(18): 6460. doi: 10.3390/jcm14186460.
|
| [15] |
AMMO T, GUILLAUME V G J, HOFMANN U K, et al. Evaluating ChatGPT-4o as a decision support tool in multidisciplinary sarcoma tumor boards: Heterogeneous performance across various specialties[J]. Frontiers in Oncology, 2025, 14: 1526288. doi: 10.3389/fonc.2024.1526288.
|
| [16] |
LEE J T, LI V C S, WU J J, et al. Evaluation of performance of generative large language models for stroke care[J]. npj Digital Medicine, 2025, 8(1): 481. doi: 10.1038/s41746-025-01830-9.
|
| [17] |
ELEZ E, YOSHINO T, SHEN Lin, et al. Encorafenib, cetuximab, and mFOLFOX6 in BRAF-mutated colorectal cancer[J]. New England Journal of Medicine, 2025, 392(24): 2425–2437. doi: 10.1056/NEJMoa2501912.
|
| [18] |
OMAR M, SORIN V, COLLINS J D, et al. Multi-model assurance analysis showing large language models are highly vulnerable to adversarial hallucination attacks during clinical decision support[J]. Communications Medicine, 2025, 5(1): 330. doi: 10.1038/s43856-025-01021-3.
|
| [19] |
AHN S. A guide to evade hallucinations and maintain reliability when using large language models for medical research: A narrative review[J]. Annals of Pediatric Endocrinology & Metabolism, 2025, 30(3): 115–118. doi: 10.6065/apem.2448278.139.
|
| [20] |
LIU Jiaxi. ChatGPT: Perspectives from human-computer interaction and psychology[J]. Frontiers in Artificial Intelligence, 2024, 7: 1418869. doi: 10.3389/frai.2024.1418869.
|
| [21] |
RAJARAM A, LI H, HOLODINSKY J K, et al. Opening the black box: Challenges and opportunities regarding interpretability of artificial intelligence in emergency medicine[J]. Canadian Journal of Emergency Medicine, 2025, 27(2): 83–86. doi: 10.1007/s43678-024-00827-9.
|