| Citation: | WANG Yumeng, LIU Zhenbing, LIU Zaiyi. Privacy-Preserving Federated Weakly-Supervised Learning for Cancer Subtyping on Histopathology Images[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250842 |
| [1] |
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2024, 74(3): 229–263. doi: 10.3322/caac.21834.
|
| [2] |
HAN Bingfeng, ZHENG Rongshou, ZENG Hongmei, et al. Cancer incidence and mortality in China, 2022[J]. Journal of the National Cancer Center, 2024, 4(1): 47–53. doi: 10.1016/j.jncc.2024.01.006.
|
| [3] |
DENTRO S C, LESHCHINER I, HAASE K, et al. Characterizing genetic intra-tumor heterogeneity across 2, 658 human cancer genomes[J]. Cell, 2021, 184(8): 2239–2254. e39. doi: 10.1016/j.cell.2021.03.009.
|
| [4] |
WANG Yibei, SAFI M, HIRSCH F R, et al. Immunotherapy for advanced-stage squamous cell lung cancer: The state of the art and outstanding questions[J]. Nature Reviews Clinical Oncology, 2025, 22(3): 200–214. doi: 10.1038/s41571-024-00979-8.
|
| [5] |
GONG Tingting, GUO Shuang, LIU Fanghua, et al. Proteomic characterization of epithelial ovarian cancer delineates molecular signatures and therapeutic targets in distinct histological subtypes[J]. Nature Communications, 2023, 14(1): 7802. doi: 10.1038/s41467-023-43282-3.
|
| [6] |
NASRAZADANI A, LI Yujia, FANG Yusi, et al. Mixed invasive ductal lobular carcinoma is clinically and pathologically more similar to invasive lobular than ductal carcinoma[J]. British Journal of Cancer, 2023, 128(6): 1030–1039. doi: 10.1038/s41416-022-02131-8.
|
| [7] |
ELMORE J. Abstract SY01–03: The gold standard cancer diagnosis: Studies of physician variability, interpretive behavior, and the impact of AI[J]. Cancer Research, 2021, 81(S13): SY01–03. doi: 10.1158/1538-7445.AM2021-SY01-03.
|
| [8] |
MADABHUSHI A and LEE G. Image analysis and machine learning in digital pathology: Challenges and opportunities[J]. Medical Image Analysis, 2016, 33: 170–175. doi: 10.1016/j.media.2016.06.037.
|
| [9] |
LI Bin, KEIKHOSRAVI A, LOEFFLER A G, et al. Single image super-resolution for whole slide image using convolutional neural networks and self-supervised color normalization[J]. Medical Image Analysis, 2021, 68: 101938. doi: 10.1016/j.media.2020.101938.
|
| [10] |
BULTEN W, PINCKAERS H, VAN BOVEN H, et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: A diagnostic study[J]. The Lancet Oncology, 2020, 21(2): 233–241. doi: 10.1016/S1470-2045(19)30739-9.
|
| [11] |
SRINIDHI C L, CIGA O, and MARTEL A L. Deep neural network models for computational histopathology: A survey[J]. Medical Image Analysis, 2021, 67: 101813. doi: 10.1016/j.media.2020.101813.
|
| [12] |
DIETTERICH T G, LATHROP R H, and LOZANO-PÉREZ T. Solving the multiple instance problem with axis-parallel rectangles[J]. Artificial Intelligence, 1997, 89(1/2): 31–71. doi: 10.1016/S0004-3702(96)00034-3.
|
| [13] |
CARBONNEAU M A, CHEPLYGINA V, GRANGER E, et al. Multiple instance learning: A survey of problem characteristics and applications[J]. Pattern Recognition, 2018, 77: 329–353. doi: 10.1016/j.patcog.2017.10.009.
|
| [14] |
LU M Y, WILLIAMSON D F K, CHEN T Y, et al. Data-efficient and weakly supervised computational pathology on whole-slide images[J]. Nature Biomedical Engineering, 2021, 5(6): 555–570. doi: 10.1038/s41551-020-00682-w.
|
| [15] |
BONTEMPO G, BOLELLI F, PORRELLO A, et al. A graph-based multi-scale approach with knowledge distillation for WSI classification[J]. IEEE Transactions on Medical Imaging, 2024, 43(4): 1412–1421. doi: 10.1109/TMI.2023.3337549.
|
| [16] |
DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 248–255. doi: 10.1109/CVPR.2009.5206848.
|
| [17] |
MARELLI L and TESTA G. Scrutinizing the EU general data protection regulation[J]. Science, 2018, 360(6388): 496–498. doi: 10.1126/science.aar5419.
|
| [18] |
MARKS M and HAUPT C E. AI chatbots, health privacy, and challenges to HIPAA compliance[J]. JAMA, 2023, 330(4): 309–310. doi: 10.1001/jama.2023.9458.
|
| [19] |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. The 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2017: 1273–1282.
|
| [20] |
KARARGYRIS A, UMETON R, SHELLER M J, et al. Federated benchmarking of medical artificial intelligence with MedPerf[J]. Nature Machine Intelligence, 2023, 5(7): 799–810. doi: 10.1038/s42256-023-00652-2.
|
| [21] |
DU TERRAIL J O, LEOPOLD A, JOLY C, et al. Federated learning for predicting histological response to neoadjuvant chemotherapy in triple-negative breast cancer[J]. Nature Medicine, 2023, 29(1): 135–146. doi: 10.1038/s41591-022-02155-w.
|
| [22] |
ZHANG Yuanming, LI Zheng, HAN Xiangmin, et al. Pseudo-data based self-supervised federated learning for classification of histopathological images[J]. IEEE Transactions on Medical Imaging, 2024, 43(3): 902–915. doi: 10.1109/TMI.2023.3323540.
|
| [23] |
RODRÍGUEZ-BARROSO N, JIMÉNEZ-LÓPEZ D, LUZÓN M V, et al. Survey on federated learning threats: Concepts, taxonomy on attacks and defences, experimental study and challenges[J]. Information Fusion, 2023, 90: 148–173. doi: 10.1016/j.inffus.2022.09.011.
|
| [24] |
ZHANG Yuheng, JIA Ruoxi, PEI Hengzhi, et al. The secret revealer: Generative model-inversion attacks against deep neural networks[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 250–258. doi: 10.1109/CVPR42600.2020.00033.
|
| [25] |
GEIPING J, BAUERMEISTER H, DRÖGE H, et al. Inverting gradients-how easy is it to break privacy in federated learning?[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 1421.
|
| [26] |
WANG Zhibo, SONG Mengkai, ZHANG Zhifei, et al. Beyond inferring class representatives: User-level privacy leakage from federated learning[C]. IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 2019: 2512–2520. doi: 10.1109/INFOCOM.2019.8737416.
|
| [27] |
DONG Jinshuo, ROTH A, and SU Weijie. Gaussian differential privacy[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2022, 84(1): 3–37. doi: 10.1111/rssb.12454.
|
| [28] |
KAISSIS G A, MAKOWSKI M R, RÜCKERT D, et al. Secure, privacy-preserving and federated machine learning in medical imaging[J]. Nature Machine Intelligence, 2020, 2(6): 305–311. doi: 10.1038/s42256-020-0186-1.
|
| [29] |
WANG Xiaoding, HU Jia, LIN Hui, et al. Federated learning-empowered disease diagnosis mechanism in the internet of medical things: From the privacy-preservation perspective[J]. IEEE Transactions on Industrial Informatics, 2023, 19(7): 7905–7913. doi: 10.1109/TII.2022.3210597.
|
| [30] |
XIANG Hangchen, SHEN Junyi, YAN Qingguo, et al. Multi-scale representation attention based deep multiple instance learning for gigapixel whole slide image analysis[J]. Medical Image Analysis, 2023, 89: 102890. doi: 10.1016/j.media.2023.102890.
|
| [31] |
CHIDAMBARANATHAN M, SHARMA U, NAIDU C M, et al. A new approach for recognition of implant in knee by template matching[J]. Indian Journal of Science and Technology, 2016, 9(37): 1–5. doi: 10.17485/ijst/2016/v9i37/102081.
|
| [32] |
SHI Xiaoshuang, XING Fuyong, XU Kaidi, et al. Loss-based attention for interpreting image-level prediction of convolutional neural networks[J]. IEEE Transactions on Image Processing, 2021, 30: 1662–1675. doi: 10.1109/TIP.2020.3046875.
|
| [33] |
GUO Shengnan, WANG Xibin, LONG Shigong, et al. A federated learning scheme meets dynamic differential privacy[J]. CAAI Transactions on Intelligence Technology, 2023, 8(3): 1087–1100. doi: 10.1049/cit2.12187.
|
| [34] |
ZHENG Yifeng, LAI Shangqi, LIU Yi, et al. Aggregation service for federated learning: An efficient, secure, and more resilient realization[J]. IEEE Transactions on Dependable and Secure Computing, 2023, 20(2): 988–1001. doi: 10.1109/TDSC.2022.3146448.
|
| [35] |
WANG Bo, LI Hongtao, GUO Yina, et al. PPFLHE: A privacy-preserving federated learning scheme with homomorphic encryption for healthcare data[J]. Applied Soft Computing, 2023, 146: 110677. doi: 10.1016/j.asoc.2023.110677.
|
| [36] |
LI Xiaoxiao, GU Yufeng, DVORNEK N, et al. Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results[J]. Medical Image Analysis, 2020, 65: 101765. doi: 10.1016/j.media.2020.101765.
|
| [37] |
LU M Y, CHEN R J, KONG Dehan, et al. Federated learning for computational pathology on gigapixel whole slide images[J]. Medical Image Analysis, 2022, 76: 102298. doi: 10.1016/j.media.2021.102298.
|
| [38] |
MACENKO M, NIETHAMMER M, MARRON J S, et al. A method for normalizing histology slides for quantitative analysis[C]. 2019 IEEE International Symposium on Biomedical Imaging, Boston, USA, 2009: 1107–1110. doi: 10.1109/ISBI.2009.5193250.
|
| [39] |
MA Benteng, FENG Yu, CHE Geng, et al. Federated adaptive reweighting for medical image classification[J]. Pattern Recognition, 2023, 144: 109880. doi: 10.1016/j.patcog.2023.109880.
|
| [40] |
ILSE M, TOMCZAK J M, and WELLING M. Attention-based deep multiple instance learning[C]. The 35th International Conference on Machine Learning, Stockholmsmässan, Sweden, 2018: 2132–2141.
|