| Citation: | LIU Zhenbing, LI Huanlan, WANG Baoyuan, LU Haoxiang, PAN Xipeng. Federated Semi-Supervised Image Segmentation with Dynamic Client Selection[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250834 |
| [1] |
CORNFORD P, VAN DEN BERGH R C N, BRIERS E, et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG guidelines on prostate cancer—2024 update. Part I: Screening, diagnosis, and local treatment with curative intent[J]. European Urology, 2024, 86(2): 148–163. doi: 10.1016/j.eururo.2024.03.027.
|
| [2] |
孙军梅, 葛青青, 李秀梅, 等. 一种具有边缘增强特点的医学图像分割网络[J]. 电子与信息学报, 2022, 44(5): 1643–1652. doi: 10.11999/JEIT210784.
SUN Junmei, GE Qingqing, LI Xiumei, et al. A medical image segmentation network with boundary enhancement[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1643–1652. doi: 10.11999/JEIT210784.
|
| [3] |
AZAD R, AGHDAM E K, RAULAND A, et al. Medical image segmentation review: The success of U-Net[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 10076–10095. doi: 10.1109/TPAMI.2024.3435571.
|
| [4] |
JIANG Yangfan, LUO Xinjian, WU Yuncheng, et al. On data distribution leakage in cross-silo federated learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(7): 3312–3328. doi: 10.1109/TKDE.2023.3349323.
|
| [5] |
肖雄, 唐卓, 肖斌, 等. 联邦学习的隐私保护与安全防御研究综述[J]. 计算机学报, 2023, 46(5): 1019–1044. doi: 10.11897/SP.J.1016.2023.01019.
XIAO Xiong, TANG Zhuo, XIAO Bin, et al. A survey on privacy and security issues in federated learning[J]. Chinese Journal of Computers, 2023, 46(5): 1019–1044. doi: 10.11897/SP.J.1016.2023.01019.
|
| [6] |
YANG Xiangli, SONG Zixing, KING I, et al. A survey on deep semi-supervised learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(9): 8934–8954. doi: 10.1109/TKDE.2022.3220219.
|
| [7] |
MA Yuxi, WANG Jiacheng, YANG Jing, et al. Model-heterogeneous semi-supervised federated learning for medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2024, 43(5): 1804–1815. doi: 10.1109/TMI.2023.3348982.
|
| [8] |
YANG Dong, XU Ziyue, LI Wenqi, et al. Federated semi-supervised learning for COVID region segmentation in chest CT using multi-national data from China, Italy, Japan[J]. Medical Image Analysis, 2021, 70: 101992. doi: 10.1016/j.media.2021.101992.
|
| [9] |
WU Huisi, ZHANG Baiming, CHEN Cheng, et al. Federated semi-supervised medical image segmentation via prototype-based pseudo-labeling and contrastive learning[J]. IEEE Transactions on Medical Imaging, 2023, 43(2): 649–661. doi: 10.1109/TMI.2023.3314430.
|
| [10] |
LUO Xiangde, WANG Guotai, LIAO Wenjun, et al. Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency[J]. Medical Image Analysis, 2022, 80: 102517. doi: 10.1016/j.media.2022.102517.
|
| [11] |
SU Jiawei, LUO Zhiming, LIAN Sheng, et al. Mutual learning with reliable pseudo label for semi-supervised medical image segmentation[J]. Medical Image Analysis, 2024, 94: 103111. doi: 10.1016/j.media.2024.103111.
|
| [12] |
ABUDUWEILI A, LI Xingjian, SHI H, et al. Adaptive consistency regularization for semi-supervised transfer learning[C]. Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 6919–6928. doi: 10.1109/CVPR46437.2021.00685.
|
| [13] |
SHELLER M J, EDWARDS B, REINA G A, et al. Federated learning in medicine: Facilitating multi-institutional collaborations without sharing patient data[J]. Scientific Reports, 2020, 10(1): 12598. doi: 10.1038/s41598-020-69250-1.
|
| [14] |
LIU Quande, DOU Qi, YU Lequan, et al. MS-Net: Multi-site network for improving prostate segmentation with heterogeneous MRI data[J]. IEEE Transactions on Medical Imaging, 2020, 39(9): 2713–2724. doi: 10.1109/TMI.2020.2974574.
|
| [15] |
XU An, LI Wenqi, GUO Pengfei, et al. Closing the generalization gap of cross-silo federated medical image segmentation[C]. Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 20834–20843. doi: 10.1109/CVPR52688.2022.02020.
|
| [16] |
JIANG Meirui, YANG Hongzheng, CHENG Chen, et al. IOP-FL: Inside-outside personalization for federated medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2023, 42(7): 2106–2117. doi: 10.1109/TMI.2023.3263072.
|
| [17] |
LIU Quande, YANG Hongzheng, DOU Qi, et al. Federated semi-supervised medical image classification via inter-client relation matching[C]. Proceedings of the 24th International Conference on Medical Image Computing and Computer Assisted Intervention, Strasbourg, France, 2021: 325–335. doi: 10.1007/978-3-030-87199-4_31.
|
| [18] |
WICAKSANA J, YAN Zengqiang, ZHANG Dong, et al. FedMix: Mixed supervised federated learning for medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2023, 42(7): 1955–1968. doi: 10.1109/TMI.2022.3233405.
|
| [19] |
WANG Dan, HAN Chu, ZHANG Zhen, et al. FedDUS: Lung tumor segmentation on CT images through federated semi-supervised with dynamic update strategy[J]. Computer Methods and Programs in Biomedicine, 2024, 249: 108141. doi: 10.1016/j.cmpb.2024.108141.
|
| [20] |
QIU Liang, CHENG Jierong, GAO Huxin, et al. Federated semi-supervised learning for medical image segmentation via pseudo-label denoising[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(10): 4672–4683. doi: 10.1109/JBHI.2023.3274498.
|
| [21] |
RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28.
|
| [22] |
ZHOU Zongwei, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: A nested U-Net architecture for medical image segmentation[C]. Proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Granada, Spain, 2018: 3–11. doi: 10.1007/978-3-030-00889-5_1.
|
| [23] |
HUANG Huimin, LIN Lanfen, TONG Ruofeng, et al. UNet 3+: A full-scale connected UNet for medical image segmentation[C]. Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020: 1055–1059. doi: 10.1109/ICASSP40776.2020.9053405.
|
| [24] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944. doi: 10.1109/CVPR.2017.106.
|
| [25] |
CHEN Shaolong, QIU Changzhen, YANG Weiping, et al. Combining edge guidance and feature pyramid for medical image segmentation[J]. Biomedical Signal Processing and Control, 2022, 78: 103960. doi: 10.1016/j.bspc.2022.103960.
|
| [26] |
OKTAY O, SCHLEMPER J, LE FOLGOC L, et al. Attention U-Net: Learning where to look for the pancreas[EB/OL]. https://arxiv.org/abs/1804.03999.pdf, 2018.
|
| [27] |
FENG Shuanglang, ZHAO Heming, SHI Fei, et al. CPFNet: Context pyramid fusion network for medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(10): 3008–3018. doi: 10.1109/TMI.2020.2983721.
|
| [28] |
GU Zaiwang, CHENG Jun, FU Huazhu, et al. CE-Net: Context encoder network for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2019, 38(10): 2281–2292. doi: 10.1109/TMI.2019.2903562.
|
| [29] |
DENG Yongheng, LYU Feng, REN Ju, et al. FAIR: Quality-aware federated learning with precise user incentive and model aggregation[C]. Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications, Vancouver, Canada, 2021: 1–10. doi: 10.1109/INFOCOM42981.2021.9488743.
|
| [30] |
LITJENS G, TOTH R, VAN DE VEN W, et al. Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge[J]. Medical Image Analysis, 2014, 18(2): 359–373. doi: 10.1016/j.media.2013.12.002.
|
| [31] |
LEMAÎTRE G, MARTÍ R, FREIXENET J, et al. Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review[J]. Computers in Biology and Medicine, 2015, 60: 8–31. doi: 10.1016/j.compbiomed.2015.02.009.
|
| [32] |
BLOCH N, MADABHUSHI A, HUISMAN H, et al. NCI-ISBI 2013 challenge: Automated segmentation of prostate structures. The cancer imaging archive[EB/OL]. http://doi.org/10.7937/K9/TCIA.2015.zF0vlOPv, 2015.
|
| [33] |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2017: 1273–1282.
|
| [34] |
LIANG Xiaoxiao, LIN Yiqun, FU Huazhu, et al. RSCFed: Random sampling consensus federated semi-supervised learning[C]. Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 10144–10153. doi: 10.1109/CVPR52688.2022.00991.
|
| [35] |
MA Yuxi, WANG Jiacheng, YANG Jing, et al. Model-heterogeneous semi-supervised federated learning for medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2024, 43(5): 1804–1815. doi: 10.1109/TMI.2023.3348982. (查阅网上资料,本条文献与第7条文献重复,请确认).
|
| [36] |
XIAO Yunpeng, ZHANG Qunqing, TANG Fei, et al. Cycle-fed: A double-confidence unlabeled data augmentation method based on semi-supervised federated learning[J]. IEEE Transactions on Mobile Computing, 2024, 23(12): 11014–11028. doi: 10.1109/TMC.2024.3388731.
|
| [37] |
XI Yuan, LI Qiong, and MAO Haokun. Federated semi-supervised learning via globally guided pseudo-labeling: A robust approach for label-scarce scenarios[J]. Expert Systems with Applications, 2025, 294: 128667. doi: 10.1016/j.eswa.2025.128667.
|