| Citation: | HE Qian, ZHU Lei, LI Gong, YOU Zhengpeng, YUAN Lei, JIA Fei. Research on Collaborative Reasoning Framework and Algorithms of Cloud-Edge Large Models for Intelligent Auxiliary Diagnosis Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250828 |
| [1] |
GUO Daya, YANG Dejian, ZHANG Haowei, et al. DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning[EB/OL]. https://arxiv.org/abs/2501.12948, 2025.
|
| [2] |
LIU Aixin, FENG Bei, XUE Bing, et al. DeepSeek-V3 technical report[EB/OL]. https://arxiv.org/abs/2412.19437, 2025.
|
| [3] |
ZHANG Ziheng, LIN Zhenxi, ZHENG Yefeng, et al. How much medical knowledge do LLMs have? An evaluation of medical knowledge coverage for LLMs[C]. Proceedings of the ACM on Web Conference 2025, Sydney, Australia, 2025: 5330–5341. doi: 10.1145/3696410.3714535.
|
| [4] |
VINEELA A, KASIVISWANATH N, and BINDU C S. Data integrity auditing scheme for preserving security in cloud based big data[C]. 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 2022: 609–613. doi: 10.1109/ICICCS53718.2022.9788365.
|
| [5] |
ZHANG Sainan and SONG J. A chatbot based question and answer system for the auxiliary diagnosis of chronic diseases based on large language model[J]. Scientific Reports, 2024, 14(1): 17118. doi: 10.1038/s41598-024-67429-4.
|
| [6] |
MAO Yuqiang, XU Nan, WU Yanan, et al. Assessments of lung nodules by an artificial intelligence chatbot using longitudinal CT images[J]. Cell Reports Medicine, 2025, 6(3): 101988. doi: 10.1016/j.xcrm.2025.101988.
|
| [7] |
PANAGOULIAS D P, PALAMIDAS F A, VIRVOU M, et al. Rule-augmented artificial intelligence-empowered systems for medical diagnosis using large language models[C]. 2023 IEEE 35th International Conference on Tools with Artificial Intelligence (ICTAI), Atlanta, USA, 2023: 70–77. doi: 10.1109/ICTAI59109.2023.00018.
|
| [8] |
YU Han, GUO Peikun, and SANO A. Zero-shot ECG diagnosis with large language models and retrieval-augmented generation[C]. Proceedings of Machine Learning Research, New Orleans, USA, 2023: 650–663.
|
| [9] |
陈玉平, 刘波, 林伟伟, 等. 云边协同综述[J]. 计算机科学, 2021, 48(3): 259–268. doi: 10.11896/jsjkx.201000109.
CHEN Yuping, LIU Bo, LIN Weiwei, et al. Survey of cloud-edge collaboration[J]. Computer Science, 2021, 48(3): 259–268. doi: 10.11896/jsjkx.201000109.
|
| [10] |
LUO Zeliang, DING Xiaoxuan, HOU Ning, et al. A deep-learning-based collaborative edge-cloud telemedicine system for retinopathy of prematurity[J]. Sensors, 2023, 23(1): 276. doi: 10.3390/s23010276.
|
| [11] |
LIU Yehui, XU Aobo, ZENG Hui, et al. Edge computing-based cloud platform for snakebite assisted diagnosis[C]. Proceedings of the 2023 8th International Conference on Biomedical Signal and Image Processing, Chengdu, China, 2023: 18–22. doi: 10.1145/3613307.3613311.
|
| [12] |
王继彬, 张虎, 陈静, 等. 算力网络场景下的超算互联网建设探索与实践[J]. 邮电设计技术, 2024(2): 14–21. doi: 10.12045/j.issn.1007-3043.2024.02.003.
WANG Jibin, ZHANG Hu, CHEN Jing, et al. Exploration and practice of supercomputing internet construction in computing power network scenarios[J]. Designing Techniques of Posts and Telecommunications, 2024(2): 14–21. doi: 10.12045/j.issn.1007-3043.2024.02.003.
|
| [13] |
李逸博, 李小平, 王爽, 等. 面向算力网络的智慧调度综述[J]. 自动化学报, 2024, 50(6): 1086–1103. doi: 10.16383/j.aas.c230196.
LI Yibo, LI Xiaoping, WANG Shuang, et al. Survey on wise scheduling in computing power network[J]. Acta Automatica Sinica, 2024, 50(6): 1086–1103. doi: 10.16383/j.aas.c230196.
|
| [14] |
GAN Wensheng, WAN Shicheng, and YU P S. Model-as-a-service (MaaS): A survey[C]. 2023 IEEE International Conference on Big Data, Sorrento, Italy, 2023: 4636–4645. doi: 10.1109/BigData59044.2023.10386351.
|
| [15] |
赵婵婵, 吕飞, 石宝, 等. 面向边缘智能的协同推理方法研究综述[J]. 计算机工程与应用, 2025, 61(3): 1–20. doi: 10.3778/j.issn.1002-8331.2406-0040.
ZHAO Chanchan, LYU Fei, SHI Bao, et al. Review of collaborative inference methods for edge intelligence[J]. Computer Engineering and Applications, 2025, 61(3): 1–20. doi: 10.3778/j.issn.1002-8331.2406-0040.
|
| [16] |
庄严, 张军雁, 卢若谷, 等. 基于医学大模型的智能问诊助手构建研究[J]. 解放军医学院学报, 2025, 46(2): 126–133. doi: 10.12435/j.issn.2095-5227.24070108.
ZHUANG Yan, ZHANG Junyan, LU Ruogu, et al. Constructing an intelligent consultation assistant system based on medical large language models[J]. Academic Journal of Chinese PLA Medical School, 2025, 46(2): 126–133. doi: 10.12435/j.issn.2095-5227.24070108.
|
| [17] |
ZHANG Xianwei, WU Peng, CAI Jiuming, et al. A contrastive study of Chinese text segmentation tools in marketing notification texts[J]. Journal of Physics: Conference Series, 2019, 1302(2): 022010. doi: 10.1088/1742-6596/1302/2/022010.
|
| [18] |
DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, USA, 2019: 4171–4186. doi: 10.18653/v1/N19-1423.
|
| [19] |
ROMEO J, ABBASS M, SHERIF A, et al. Privacy-preserving machine learning for E-health applications: A survey[C]. 2024 IEEE 3rd International Conference on Computing and Machine Intelligence (ICMI), Mt Pleasant, USA, 2024: 1–6. doi: 10.1109/ICMI60790.2024.10586115.
|
| [20] |
奥德玛, 杨云飞, 穗志方, 等. 中文医学知识图谱CMeKG构建初探[J]. 中文信息学报, 2019, 33(10): 1–9. doi: 10.3969/j.issn.1003-0077.2019.10.001.
AO Dema, YANG Yunfei, SUI Zhifang, et al. Preliminary study on the construction of Chinese medical knowledge graph[J]. Journal of Chinese Information Processing, 2019, 33(10): 1–9. doi: 10.3969/j.issn.1003-0077.2019.10.001.
|
| [21] |
LI Bin, SUN Bin, LI Shutao, et al. Distinct but correct: Generating diversified and entity-revised medical response[J]. Science China Information Sciences, 2024, 67(3): 132106. doi: 10.1007/s11432-021-3534-9.
|
| [22] |
赵鹏, 李金翼, 王琛, 等. 人工智能能力与算力网络智慧运营研究与应用[J]. 计算机应用, 2025, 45(S1): 295–301.
ZHAO Peng, LI Jinyi, WANG Chen, et al. Research and application on intelligent operation of artificial intelligence capability and computing power network[J]. Journal of Computer Applications, 2025, 45(S1): 295–301.
|
| [23] |
REZAEI M R, FARD R S, PARKER J L, et al. Agentic medical knowledge graphs enhance medical question answering: Bridging the gap between LLMs and evolving medical knowledge[C]. Findings of the Association for Computational Linguistics, Suzhou, China, 2025: 12682–12701. doi: 10.18653/v1/2025.findings-emnlp.679.
|