| Citation: | ZHOU Decheng, WANG Wei, SHAO Xiang, CHEN Mei, XIAO Jianghao. Radio Map Enabled Path Planning for Multiple Cellular-Connected Unmanned Aerial Vehicles[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250821 |
| [1] |
PAN Yan, CHEN Qianwu, ZHANG Nan, et al. Extending delivery range and decelerating battery aging of logistics UAVs using public buses[J]. IEEE Transactions on Mobile Computing, 2023, 22(9): 5280–5295. doi: 10.1109/TMC.2022.3167040.
|
| [2] |
高思华, 刘宝煜, 惠康华, 等. 信息年龄约束下的无人机数据采集能耗优化路径规划算法[J]. 电子与信息学报, 2024, 46(10): 4024–4034. doi: 10.11999/JEIT240075.
GAO Sihua, LIU Baoyu, HUI Kanghua, et al. Energy-efficient UAV trajectory planning algorithm for AoI-constrained data collection[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4024–4034. doi: 10.11999/JEIT240075.
|
| [3] |
SHAO Xiang and WANG Wei. Truthful double auction for multiple secondary operator spectrum sharing with flexible bidding[J]. IEEE Internet of Things Journal, 2025, 12(15): 31813–31823. doi: 10.1109/JIOT.2025.3574306.
|
| [4] |
陆音, 刘金志, 张珉. 一种模型辅助的联邦强化学习多无人机路径规划方法[J]. 电子与信息学报, 2025, 47(5): 1368–1380. doi: 10.11999/JEIT241055.
LU Yin, LIU Jinzhi, and ZHANG Min. A model-assisted federated reinforcement learning method for multi-UAV path planning[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1368–1380. doi: 10.11999/JEIT241055.
|
| [5] |
LI Zuguang, WANG Wei, GUO Jia, et al. Blockchain-empowered dynamic spectrum management for space-air-ground integrated network[J]. Chinese Journal of Electronics, 2022, 31(3): 456–466. doi: 10.1049/cje.2021.00.275.
|
| [6] |
王威, 佘丁辰, 王加琪, 等. 多模型融合的无人机异常航迹校正方法[J]. 电子与信息学报, 2025, 47(5): 1332–1344. doi: 10.11999/JEIT241026.
WANG Wei, SHE Dingchen, WANG Jiaqi, et al. Multi-model fusion-based abnormal trajectory correction method for unmanned aerial vehicles[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1332–1344. doi: 10.11999/JEIT241026.
|
| [7] |
SHAO Xiang, WANG Wei, ZHOU Bo, et al. Joint bandwidth and spectrum usage zones flexible allocation for coexisting multiple UAV networks: An interference graph approach[J]. IEEE Internet of Things Journal, 2025, 12(15): 31141–31153. doi: 10.1109/JIOT.2025.3572085.
|
| [8] |
ZHAN Cheng, HU Han, LIU Zhi, et al. Interference-aware online optimization for cellular-connected multiple UAV networks with energy constraints[J]. IEEE Transactions on Mobile Computing, 2024, 23(12): 13804–13820. doi: 10.1109/TMC.2024.3438759.
|
| [9] |
MEER I A, OZGER M, SCHUPKE D A, et al. Mobility management for cellular-connected UAVs: Model-based versus learning-based approaches for service availability[J]. IEEE Transactions on Network and Service Management, 2024, 21(2): 2125–2139. doi: 10.1109/TNSM.2024.3353677.
|
| [10] |
CHEN Guqiao, CHENG Changjun, XU Xiaoli, et al. Minimizing the age of information for data collection by cellular-connected UAV[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 9631–9635. doi: 10.1109/TVT.2023.3249747.
|
| [11] |
GUO Hongzhi, ZHOU Xiaoyi, WANG Jiadai, et al. Intelligent task offloading and resource allocation in digital twin based aerial computing networks[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(10): 3095–3110. doi: 10.1109/JSAC.2023.3310067.
|
| [12] |
陈可欣, 王威, 肖江浩, 等. 速率公平的分布式无人机资源分配方法[J]. 西安电子科技大学学报, 2025, 52(3): 48–60. doi: 10.19665/j.issn1001-2400.20250506.
CHEN Kexin, WANG Wei, XIAO Jianghao, et al. Rate fairness oriented distributed resource allocation for UAVs[J]. Journal of Xidian University, 2025, 52(3): 48–60. doi: 10.19665/j.issn1001-2400.20250506.
|
| [13] |
ZENG Yong, XU Xiaoli, JIN Shi, et al. Simultaneous navigation and radio mapping for cellular-connected UAV with deep reinforcement learning[J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4205–4220. doi: 10.1109/TWC.2021.3056573.
|
| [14] |
ZHANG Shuowen and ZHANG Rui. Trajectory design for cellular-connected UAV under outage duration constraint[C]. 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019: 1–6. doi: 10.1109/ICC.2019.8761259.
|
| [15] |
KHAMIDEHI B and SOUSA E S. Power efficient trajectory optimization for the cellular-connected aerial vehicles[C]. 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Istanbul, Turkey, 2019: 1–6. doi: 10.1109/PIMRC.2019.8904357.
|
| [16] |
AL-HOURANI A, KANDEEPAN S, and LARDNER S. Optimal LAP altitude for maximum coverage[J]. IEEE Wireless Communications Letters, 2014, 3(6): 569–572. doi: 10.1109/LWC.2014.2342736.
|
| [17] |
BI Suzhi, LYU Jiangbin, DING Zhi, et al. Engineering radio maps for wireless resource management[J]. IEEE Wireless Communications, 2019, 26(2): 133–141. doi: 10.1109/MWC.2019.1800146.
|
| [18] |
ZHANG Shuowen and ZHANG Rui. Radio map-based 3D path planning for cellular-connected UAV[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1975–1989. doi: 10.1109/TWC.2020.3037916.
|
| [19] |
ZHAN Cheng and ZENG Yong. Energy minimization for cellular-connected UAV: From optimization to deep reinforcement learning[J]. IEEE Transactions on Wireless Communications, 2022, 21(7): 5541–5555. doi: 10.1109/TWC.2022.3142018.
|
| [20] |
GONG Qiuhu, WU Fahui, YANG Dingcheng, et al. 3D radio map reconstruction and trajectory optimization for cellular-connected UAVs[J]. Journal of Communications and Information Networks, 2023, 8(4): 357–368. doi: 10.23919/JCIN.2023.10387267.
|
| [21] |
CHEN Yujing, YANG Dingcheng, XIAO Lin, et al. Optimal trajectory design for unmanned aerial vehicle cargo pickup and delivery system based on radio map[J]. IEEE Transactions on Vehicular Technology, 2024, 73(8): 11706–11718. doi: 10.1109/TVT.2024.3382170.
|
| [22] |
CHEN Yujia and HUANG Dayu. Joint trajectory design and BS association for cellular-connected UAV: An imitation-augmented deep reinforcement learning approach[J]. IEEE Internet of Things Journal, 2022, 9(4): 2843–2858. doi: 10.1109/JIOT.2021.3093116.
|
| [23] |
李安, 余传鑫, 陈成. 面向多网联无人机的MADRL协同路径规划算法[J]. 西安电子科技大学学报, 2025, 52(3): 163–175. doi: 10.19665/j.issn1001-2400.20250102.
LI An, YU Chuanxin, and CHEN Cheng. Multi-agent deep reinforcement learning assisted cooperative path planning for the multi-cellular-connected unmanned aerial vehicle[J]. Journal of Xidian University, 2025, 52(3): 163–175. doi: 10.19665/j.issn1001-2400.20250102.
|
| [24] |
WU Di, CAO Zhuang, LIN Xudong, et al. A learning-based cooperative navigation approach for multi-UAV systems under communication coverage[J]. IEEE Transactions on Network Science and Engineering, 2025, 12(2): 763–773. doi: 10.1109/TNSE.2024.3517872.
|
| [25] |
XU Xiaoli and ZENG Yong. Cellular-connected UAV: Performance analysis with 3D antenna modelling[C]. 2019 IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 2019: 1–6. doi: 10.1109/ICCW.2019.8756719.
|
| [26] |
SHARON G, STERN R, FELNER A, et al. Conflict-based search for optimal multi-agent pathfinding[J]. Artificial Intelligence, 2015, 219: 40–66. doi: 10.1016/j.artint.2014.11.006.
|
| [27] |
3GPP. TR 36.777 Enhanced LTE support for aerial vehicles[S]. Sophia Antipolis: 3GPP, 2017. (查阅网上资料, 未找到本条文献出版地信息, 请确认).
|