Advanced Search
Turn off MathJax
Article Contents
ZHOU Decheng, WANG Wei, SHAO Xiang, CHEN Mei, XIAO Jianghao. Radio Map Enabled Path Planning for Multiple Cellular-Connected Unmanned Aerial Vehicles[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250821
Citation: ZHOU Decheng, WANG Wei, SHAO Xiang, CHEN Mei, XIAO Jianghao. Radio Map Enabled Path Planning for Multiple Cellular-Connected Unmanned Aerial Vehicles[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250821

Radio Map Enabled Path Planning for Multiple Cellular-Connected Unmanned Aerial Vehicles

doi: 10.11999/JEIT250821 cstr: 32379.14.JEIT250821
Funds:  The National Natural Science Foundation of China (62371231), The Natural Science Foundation on Frontier Leading Technology Basic Research Project of Jiangsu (BK20222001), Jiangsu Provincial Key Research and Development Program (BE2023027)
  • Received Date: 2025-08-29
  • Accepted Date: 2025-12-22
  • Rev Recd Date: 2025-12-22
  • Available Online: 2026-01-03
  •   Objective  In collaborative operation scenarios of cellular-connected Unmanned Aerial Vehicles (UAVs), conflict avoidance strategies often cause unbalanced service quality. Traditional schemes focus on reducing total task completion time but do not ensure service fairness. To address this issue, a radio map-assisted cooperative path planning scheme is proposed. The objective is to minimize the maximum weighted sum of task completion time and communication disconnection time across all UAVs to improve service fairness in multi-UAV scenarios.  Methods  A Signal-to-Interference-plus-Noise Ratio (SINR) map is constructed to assess communication quality. The two-dimensional airspace is discretized into grids, and link gain maps are generated through ray tracing and Axis-Aligned Bounding Box detection to determine Line-of-Sight (LoS) or Non-Line-of-Sight (NLoS) conditions. The SINR map is produced by selecting, for each grid, the base station with the highest expected SINR. To solve the optimization problem, an Improved Conflict-Based Search (ICBS) algorithm with a hierarchical structure is developed. At the high-level stage, proximity conflicts are managed to maintain safety distances, and the cost function is reformulated to emphasize fairness by minimizing the maximum weighted time. The low-level stage applies a bidirectional A* algorithm for single-UAV path planning, using parallel search to improve efficiency while meeting the constraints set by the high-level stage.  Results and Discussions  The proposed scheme is evaluated through simulations across different scenarios. Building heights and positions are shown, where base station locations are marked by red stars and building heights are represented with color gradients from light to dark to indicate increasing height (Fig. 2). The wireless propagation characteristics between UAVs and ground base stations are demonstrated by the SINR map at an altitude of 60 m (Fig. 3), which shows significant SINR degradation in areas affected by building blockage and co-channel interference, resulting in communication blind zones. Trajectory planning results for four UAVs at an altitude of 60 m with a SINR threshold of 2 dB show that all UAVs avoid signal blind zones and complete tasks without collision risks under the proposed scheme (Fig. 4). The trade-off between task completion time and disconnection time is controlled by the weight coefficient (Fig. 5). The maximum weighted time increases monotonically as the weight coefficient increases, whereas the maximum disconnection time decreases. The bidirectional A* algorithm achieves higher computational efficiency than Dijkstra’s and traditional A* algorithms while maintaining optimal solution quality (Table 1). All three algorithms yield identical weighted times, confirming the optimality of the bidirectional A* approach, and its runtime is reduced significantly due to parallel search. Compared with three benchmark schemes, the proposed scheme achieves the lowest maximum weighted time for different SINR thresholds (Fig. 6). Performance analysis at different UAV altitudes shows that the proposed scheme maintains stable maximum weighted time below 75 m, while sharp increases appear above 75 m due to intensified interference from non-serving base stations (Fig. 7). The scalability analysis further shows clear improvements over benchmark schemes, especially when conflicts occur more frequently (Fig. 8).  Conclusions  To address fairness in cellular-connected multi-UAV systems, a radio map-assisted path planning scheme is proposed to minimize the maximum weighted time. Based on a discretized SINR map, an ICBS algorithm is developed. At the high-level stage, proximity conflicts and a reformulated cost function ensure safety and fairness, and at the low-level stage, a bidirectional A* algorithm increases search efficiency. Simulation results show that the proposed scheme lowers the maximum weighted time compared with benchmark schemes and improves fairness and overall multi-UAV collaboration performance.
  • loading
  • [1]
    PAN Yan, CHEN Qianwu, ZHANG Nan, et al. Extending delivery range and decelerating battery aging of logistics UAVs using public buses[J]. IEEE Transactions on Mobile Computing, 2023, 22(9): 5280–5295. doi: 10.1109/TMC.2022.3167040.
    [2]
    高思华, 刘宝煜, 惠康华, 等. 信息年龄约束下的无人机数据采集能耗优化路径规划算法[J]. 电子与信息学报, 2024, 46(10): 4024–4034. doi: 10.11999/JEIT240075.

    GAO Sihua, LIU Baoyu, HUI Kanghua, et al. Energy-efficient UAV trajectory planning algorithm for AoI-constrained data collection[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4024–4034. doi: 10.11999/JEIT240075.
    [3]
    SHAO Xiang and WANG Wei. Truthful double auction for multiple secondary operator spectrum sharing with flexible bidding[J]. IEEE Internet of Things Journal, 2025, 12(15): 31813–31823. doi: 10.1109/JIOT.2025.3574306.
    [4]
    陆音, 刘金志, 张珉. 一种模型辅助的联邦强化学习多无人机路径规划方法[J]. 电子与信息学报, 2025, 47(5): 1368–1380. doi: 10.11999/JEIT241055.

    LU Yin, LIU Jinzhi, and ZHANG Min. A model-assisted federated reinforcement learning method for multi-UAV path planning[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1368–1380. doi: 10.11999/JEIT241055.
    [5]
    LI Zuguang, WANG Wei, GUO Jia, et al. Blockchain-empowered dynamic spectrum management for space-air-ground integrated network[J]. Chinese Journal of Electronics, 2022, 31(3): 456–466. doi: 10.1049/cje.2021.00.275.
    [6]
    王威, 佘丁辰, 王加琪, 等. 多模型融合的无人机异常航迹校正方法[J]. 电子与信息学报, 2025, 47(5): 1332–1344. doi: 10.11999/JEIT241026.

    WANG Wei, SHE Dingchen, WANG Jiaqi, et al. Multi-model fusion-based abnormal trajectory correction method for unmanned aerial vehicles[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1332–1344. doi: 10.11999/JEIT241026.
    [7]
    SHAO Xiang, WANG Wei, ZHOU Bo, et al. Joint bandwidth and spectrum usage zones flexible allocation for coexisting multiple UAV networks: An interference graph approach[J]. IEEE Internet of Things Journal, 2025, 12(15): 31141–31153. doi: 10.1109/JIOT.2025.3572085.
    [8]
    ZHAN Cheng, HU Han, LIU Zhi, et al. Interference-aware online optimization for cellular-connected multiple UAV networks with energy constraints[J]. IEEE Transactions on Mobile Computing, 2024, 23(12): 13804–13820. doi: 10.1109/TMC.2024.3438759.
    [9]
    MEER I A, OZGER M, SCHUPKE D A, et al. Mobility management for cellular-connected UAVs: Model-based versus learning-based approaches for service availability[J]. IEEE Transactions on Network and Service Management, 2024, 21(2): 2125–2139. doi: 10.1109/TNSM.2024.3353677.
    [10]
    CHEN Guqiao, CHENG Changjun, XU Xiaoli, et al. Minimizing the age of information for data collection by cellular-connected UAV[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 9631–9635. doi: 10.1109/TVT.2023.3249747.
    [11]
    GUO Hongzhi, ZHOU Xiaoyi, WANG Jiadai, et al. Intelligent task offloading and resource allocation in digital twin based aerial computing networks[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(10): 3095–3110. doi: 10.1109/JSAC.2023.3310067.
    [12]
    陈可欣, 王威, 肖江浩, 等. 速率公平的分布式无人机资源分配方法[J]. 西安电子科技大学学报, 2025, 52(3): 48–60. doi: 10.19665/j.issn1001-2400.20250506.

    CHEN Kexin, WANG Wei, XIAO Jianghao, et al. Rate fairness oriented distributed resource allocation for UAVs[J]. Journal of Xidian University, 2025, 52(3): 48–60. doi: 10.19665/j.issn1001-2400.20250506.
    [13]
    ZENG Yong, XU Xiaoli, JIN Shi, et al. Simultaneous navigation and radio mapping for cellular-connected UAV with deep reinforcement learning[J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4205–4220. doi: 10.1109/TWC.2021.3056573.
    [14]
    ZHANG Shuowen and ZHANG Rui. Trajectory design for cellular-connected UAV under outage duration constraint[C]. 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019: 1–6. doi: 10.1109/ICC.2019.8761259.
    [15]
    KHAMIDEHI B and SOUSA E S. Power efficient trajectory optimization for the cellular-connected aerial vehicles[C]. 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Istanbul, Turkey, 2019: 1–6. doi: 10.1109/PIMRC.2019.8904357.
    [16]
    AL-HOURANI A, KANDEEPAN S, and LARDNER S. Optimal LAP altitude for maximum coverage[J]. IEEE Wireless Communications Letters, 2014, 3(6): 569–572. doi: 10.1109/LWC.2014.2342736.
    [17]
    BI Suzhi, LYU Jiangbin, DING Zhi, et al. Engineering radio maps for wireless resource management[J]. IEEE Wireless Communications, 2019, 26(2): 133–141. doi: 10.1109/MWC.2019.1800146.
    [18]
    ZHANG Shuowen and ZHANG Rui. Radio map-based 3D path planning for cellular-connected UAV[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1975–1989. doi: 10.1109/TWC.2020.3037916.
    [19]
    ZHAN Cheng and ZENG Yong. Energy minimization for cellular-connected UAV: From optimization to deep reinforcement learning[J]. IEEE Transactions on Wireless Communications, 2022, 21(7): 5541–5555. doi: 10.1109/TWC.2022.3142018.
    [20]
    GONG Qiuhu, WU Fahui, YANG Dingcheng, et al. 3D radio map reconstruction and trajectory optimization for cellular-connected UAVs[J]. Journal of Communications and Information Networks, 2023, 8(4): 357–368. doi: 10.23919/JCIN.2023.10387267.
    [21]
    CHEN Yujing, YANG Dingcheng, XIAO Lin, et al. Optimal trajectory design for unmanned aerial vehicle cargo pickup and delivery system based on radio map[J]. IEEE Transactions on Vehicular Technology, 2024, 73(8): 11706–11718. doi: 10.1109/TVT.2024.3382170.
    [22]
    CHEN Yujia and HUANG Dayu. Joint trajectory design and BS association for cellular-connected UAV: An imitation-augmented deep reinforcement learning approach[J]. IEEE Internet of Things Journal, 2022, 9(4): 2843–2858. doi: 10.1109/JIOT.2021.3093116.
    [23]
    李安, 余传鑫, 陈成. 面向多网联无人机的MADRL协同路径规划算法[J]. 西安电子科技大学学报, 2025, 52(3): 163–175. doi: 10.19665/j.issn1001-2400.20250102.

    LI An, YU Chuanxin, and CHEN Cheng. Multi-agent deep reinforcement learning assisted cooperative path planning for the multi-cellular-connected unmanned aerial vehicle[J]. Journal of Xidian University, 2025, 52(3): 163–175. doi: 10.19665/j.issn1001-2400.20250102.
    [24]
    WU Di, CAO Zhuang, LIN Xudong, et al. A learning-based cooperative navigation approach for multi-UAV systems under communication coverage[J]. IEEE Transactions on Network Science and Engineering, 2025, 12(2): 763–773. doi: 10.1109/TNSE.2024.3517872.
    [25]
    XU Xiaoli and ZENG Yong. Cellular-connected UAV: Performance analysis with 3D antenna modelling[C]. 2019 IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 2019: 1–6. doi: 10.1109/ICCW.2019.8756719.
    [26]
    SHARON G, STERN R, FELNER A, et al. Conflict-based search for optimal multi-agent pathfinding[J]. Artificial Intelligence, 2015, 219: 40–66. doi: 10.1016/j.artint.2014.11.006.
    [27]
    3GPP. TR 36.777 Enhanced LTE support for aerial vehicles[S]. Sophia Antipolis: 3GPP, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (79) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return