| Citation: | HUANG Ruiyang, WU Pengde. Ultra-Low-Power IM3 Backscatter Passive Sensing System for IoT Applications[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250787 |
| [1] |
JOUHARI M, SAEED N, ALOUINI M S, et al. A survey on scalable LoRaWAN for massive IoT: Recent advances, potentials, and challenges[J]. IEEE Communications Surveys & Tutorials, 2023, 25(3): 1841–1876. doi: 10.1109/COMST.2023.3274934.
|
| [2] |
SINHA S. State of IoT 2023: Number of connected IoT devices growing 16% to 16.7 billion globally[EB/OL]. https://iot-analytics.com/number-connected-iot-devices-2023/, 2023.
|
| [3] |
HOPE D. Why your Internet habits are not as clean as you think[EB/OL]. https://blueandgreentomorrow.com/features/why-internet-habits-are-not-as-clean-as-you-think/, 2021.
|
| [4] |
GLICKMAN C. Green IoT: The shift to practical sustainability[EB/OL]. https://cio.economictimes.indiatimes.com/news/internet-of-things/green-iot-the-shift-to-practical-sustainability/101654205, 2023.
|
| [5] |
MA Dong, LAN Guohao, HASSAN M, et al. Sensing, computing, and communications for energy harvesting IoTs: A survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 1222–1250. doi: 10.1109/COMST.2019.2962526.
|
| [6] |
PECUNIA V, OCCHIPINTI L G, and HOYE R L Z. Emerging indoor photovoltaic technologies for sustainable Internet of Things[J]. Advanced Energy Materials, 2021, 11(29): 2100698. doi: 10.1002/aenm.202100698.
|
| [7] |
GU Bowen, LI Dong, DING Haiyang, et al. Breaking the interference and fading gridlock in backscatter communications: State-of-the-art, design challenges, and future directions[J]. IEEE Communications Surveys & Tutorials, 2025, 27(2): 870–911. doi: 10.1109/COMST.2024.3436082.
|
| [8] |
XU Chenren, YANG Lei, and ZHANG Pengyu. Practical backscatter communication systems for battery-free Internet of Things: A tutorial and survey of recent research[J]. IEEE Signal Processing Magazine, 2018, 35(5): 16–27. doi: 10.1109/MSP.2018.2848361.
|
| [9] |
BLETSAS A, ALEVIZOS P N, and VOUGIOUKAS G. The art of signal processing in backscatter radio for μW (or less) Internet of Things: Intelligent signal processing and backscatter radio enabling batteryless connectivity[J]. IEEE Signal Processing Magazine, 2018, 35(5): 28–40. doi: 10.1109/MSP.2018.2837678.
|
| [10] |
SUN Xueman, LIU Changjun, CHEN Yidan, et al. Low-power wireless uplink utilizing harmonic with an integrated rectifier–transmitter[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(2): 200–203. doi: 10.1109/LMWC.2020.3043793.
|
| [11] |
HÜSSEN L, WEI M D, and NEGRA R. Power efficient simultaneous wireless information transception and power reception through an isolation barrier[C]. 2024 IEEE Wireless Power Technology Conference and Expo (WPTCE), Kyoto, Japan, 2024: 872–875. doi: 10.1109/WPTCE59894.2024.10557398.
|
| [12] |
CHE Dan, LIU Changjun, HE Haoming, et al. Second- and third-harmonic backscatter through a bandstop filter using defected ground structure[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(11): 4171–4175. doi: 10.1109/TCSII.2023.3279100.
|
| [13] |
LEE N, LEE D, and OH J. Wideband harmonic backscattering rectifier for energy-efficient localization in wireless power transfer systems[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(11): 1568–1571. doi: 10.1109/LMWT.2023.3317429.
|
| [14] |
TANG Xiaoqing, LIU Xin, XIE Guihui, et al. Prototype implementation and experimental evaluation for LoRa-backscatter communication systems with RF energy harvesting and low power management[J]. IEEE Transactions on Communications, 2025, 73(7): 4811–4825. doi: 10.1109/TCOMM.2024.3522052.
|
| [15] |
TANG Xiaoqing, ZHANG Yunxin, SHAO Xiaodie, et al. Battery-free ultrahigh-frequency wireless temperature sensing tag for IoT applications[J]. IEEE Internet of Things Journal, 2025, 12(18): 37119–37131. doi: 10.1109/JIOT.2025.3586686.
|
| [16] |
KUO N C, ZHAO Bo, and NIKNEJAD A M. Novel inductive wireless power transfer uplink utilizing rectifier third-order nonlinearity[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(1): 319–331. doi: 10.1109/TMTT.2017.2700274.
|
| [17] |
QARAGOEZ Y, POLLIN S, and SCHREURS D. Enhanced two-way communication for battery-free wireless sensors: SWIPT with IM3 backscattering[C]. 2022 IEEE/MTT-S International Microwave Symposium - IMS 2022, Denver, USA, 2022: 48–51. doi: 10.1109/IMS37962.2022.9865269.
|
| [18] |
YANG Changgui, ZHANG Yunshan, CHANG Ziyi, et al. Neural dielet: A 0.4 mm3 battery-less crystal-less neural-recording system on die achieving 1.6 cm backscatter range with 2 mm ×2 mm on-chip antenna[J]. IEEE Transactions on Biomedical Circuits and Systems, 2023, 17(1): 54–66. doi: 10.1109/TBCAS.2022.3232783.
|
| [19] |
POZAR D M. Microwave Engineering[M]. 4th ed. Hoboken John Wiley & Sons, 2012: 537–538. (查阅网上资料, 未找到本条文献出版地信息, 请确认).
|
| [20] |
RFM95PW. HOPERF Reliable original manufacturer of IoT key components[EB/OL]. https://www.hoperf.com/modules/lora/RFM95PW.html. (查阅网上资料,未找到本条文献题目和年份信息,请确认).
|
| [21] |
RFM95W. HOPERF Reliable original manufacturer of IoT key components[EB/OL]. https://www.hoperf.com/modules/lora/RFM95PW.html. (查阅网上资料,未找到本条文献题目和年份信息,请确认).
|
| [22] |
Texas Instruments. BQ25504 ultra low-power boost converter with battery management for energy harvester applications[EB/OL]. https://www.ti.com/lit/ds/symlink/bq25504.pdf, 2023.
|