| Citation: | ZHENG Hui, CHEN Fu, HE Shuping, QIU Xuexing, ZHU Hongfang, WANG Shaohua. A Multi-scale Spatiotemporal Correlation Attention and State Space Modeling-based Approach for Precipitation Nowcasting[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250786 |
| [1] |
李海, 冯开泓, 杨文恒, 等. 机载双极化气象雷达多种降水粒子回波仿真方法研究[J]. 电子与信息学报, 2023, 45(8): 2945–2954. doi: 10.11999/JEIT220830.
LI Hai, FENG Kaihong, YANG Wenheng, et al. Study on simulation method of precipitation particle echo of airborne dual-polarization weather radar[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2945–2954. doi: 10.11999/JEIT220830.
|
| [2] |
周康辉, 郑永光, 杨波, 等. 强对流天气客观临近预报技术进展和展望[J]. 气象学报, 2025, 83(3): 798–812. doi: 10.11676/qxxb2025.20240106.
ZHOU Kanghui, ZHENG Yongguang, YANG Bo, et al. Objective nowcasting of severe convective weather: Technological progress and outlook[J]. Acta Meteorologica Sinica, 2025, 83(3): 798–812. doi: 10.11676/qxxb2025.20240106.
|
| [3] |
朱平, 李生辰, 王振会, 等. 青藏高原东部暴雨云团局地强降水响应特征[J]. 遥感学报, 2014, 18(2): 405–431. doi: 10.11834/jrs.20143069.
ZHU Ping, LI Shengchen, WANG Zhenhui, et al. Characteristics of rainstorm cloud clusters to local heavy precipitation over the eastern Qinghai-Tibet Plateau[J]. Journal of Remote Sensing, 2014, 18(2): 405–431. doi: 10.11834/jrs.20143069.
|
| [4] |
刘西川, 宋堃, 高太长, 等. 复杂大气条件对微波传播衰减的影响研究[J]. 电子与信息学报, 2018, 40(1): 181–188. doi: 10.11999/JEIT170253.
LIU Xichuan, SONG Kun, GAO Taichang, et al. Research on the effect of complex atmospheric condition on microwave propagation attenuation[J]. Journal of Electronics & Information Technology, 2018, 40(1): 181–188. doi: 10.11999/JEIT170253.
|
| [5] |
BAILEY L P, CLARE M A, HUNT J E, et al. Highly variable deep-sea currents over tidal and seasonal timescales[J]. Nature Geoscience, 2024, 17(8): 787–794. doi: 10.1038/s41561-024-01494-2.
|
| [6] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. Proceedings of the 28th International Conference on Neural Information Processing Systems, Montréal, Canda, 2014: 2672–2680.
|
| [7] |
VAN DEN OORD A, KALCHBRENNER N, VINVALS O, et al. Conditional image generation with PixelCNN decoders[C]. Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 4797–4805.
|
| [8] |
GAO Zhihan, SHI Xingjian, HAN Boran, et al. PreDiff: Precipitation nowcasting with latent diffusion models[C]. Proceedings of the 37th International Conference on Neural Information Processing Systems, New Orleans, USA, 2023: 3439.
|
| [9] |
GONG Junchao, BAI Lei, YE Peng, et al. CasCast: Skillful high-resolution precipitation nowcasting via cascaded modelling[C]. Proceedings of the 41st International Conference on Machine Learning, 2024: 633. (查阅网上资料, 未找到本条文献出版地信息, 请确认).
|
| [10] |
LING Xudong, LI Chaorong, QIN Fengqing, et al. RNDiff: Rainfall nowcasting with condition diffusion model[J]. Pattern Recognition, 2025, 160: 111193. doi: 10.1016/j.patcog.2024.111193.
|
| [11] |
李云, 杨松林, 邢智童, 等. 多尺度特征注意力网络下的卫星信号识别研究[J]. 电子与信息学报, 2025, 47(6): 1792–1802. doi: 10.11999/JEIT250126.
LI Yun, YANG Songlin, XING Zhitong, et al. Study on satellite signal recognition with multi-scale feature attention network[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1792–1802. doi: 10.11999/JEIT250126.
|
| [12] |
ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]. Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA 2022: 10684–10695. doi: 10.1109/CVPR52688.2022.01042.
|
| [13] |
CHEN Lei, CAO Yuan, MA Leiming, et al. A deep learning-based methodology for precipitation nowcasting with radar[J]. Earth and Space Science, 2020, 7(2): e2019EA000812. doi: 10.1029/2019EA000812.
|
| [14] |
VEILLETTE M S, SAMSI S, and MATTIOLI C J. SEVIR: A storm event imagery dataset for deep learning applications in radar and satellite meteorology[C]. Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 1846.
|
| [15] |
PALMER T N, SHUTTS G J, HAGEDORN R, et al. Representing model uncertainty in weather and climate prediction[J]. Annual Review of Earth and Planetary Sciences, 2005, 33: 163–193. doi: 10.1146/annurev.earth.33.092203.122552.
|
| [16] |
GAO Zhihan, SHI Xingjian, WANG Hao, et al. Earthformer: Exploring space-time transformers for earth system forecasting[C]. Proceedings of the 36th Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 25390–25403.
|
| [17] |
TANG Yujin, QI Lu, XIE Fei, et al. Video prediction transformers without recurrence or convolution[EB/OL]. https://arxiv.org/abs/2410.04733, 2024.
|
| [18] |
ZHANG Yuchen, LONG Mingsheng, CHEN Kaiyuan, et al. Skilful nowcasting of extreme precipitation with NowcastNet[J]. Nature, 2023, 619(7970): 526–532. doi: 10.1038/s41586-023-06184-4.
|
| [19] |
LEINONEN J, HAMANN U, NERINI D, et al. Latent diffusion models for generative precipitation nowcasting with accurate uncertainty quantification[EB/OL]. https://arxiv.org/abs/2304.12891, 2023.
|
| [20] |
GAO Zhangyang, TAN Cheng, WU Lirong, et al. SimVP: Simpler yet better video prediction[C]. Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 3170–3180. doi: 10.1109/CVPR52688.2022.00317.
|
| [21] |
SHI Xingjian, GAO Zhihan, LAUSEN L, et al. Deep learning for precipitation nowcasting: A benchmark and a new model[C]. Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, USA, 2017.
|
| [22] |
SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[C]. Proceedings of the 29th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 802–810.
|
| [23] |
ZHU Lianghui, LIAO Bencheng, ZHANG Qian, et al. Vision mamba: Efficient visual representation learning with bidirectional state space model[C]. Proceedings of the 41st International Conference on Machine Learning, Vienna, Austria, 2024: 2584.
|
| [24] |
CHEN Hongruixuan, SONG Jian, HAN Chengxi, et al. ChangeMamba: Remote sensing change detection with spatiotemporal state space model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4409720. doi: 10.1109/TGRS.2024.3417253.
|
| [25] |
XU Xiongxiao, CHEN Canyu, LIANG Yueqing, et al. SST: Multi-scale hybrid mamba-transformer experts for time series forecasting[C]. Proceedings of the 34th ACM International Conference on Information and Knowledge Management, Seoul Republic of Korea, 2024: 3655–3665.
|
| [26] |
KINGMA D P, WELLING M. Auto-encoding variational bayes[C]. Proceedings of the 2nd International Conference on Learning Representations, Banff, Canada, 2014.
|
| [27] |
LARVOR G and BERTHOMIER L. MeteoNet: An open reference weather dataset for AI by Météo-France[C]. Proceedings of the 101st Annual AMS Meeting 2021, 2021. (查阅网上资料, 未找到对应的出版信息, 请确认).
|
| [28] |
LOSHCHILOV I and HUTTER F. Fixing weight decay regularization in Adam[EB/OL]. https://arxiv.org/abs/1711.05101, 2017.
|
| [29] |
WANG Yunbo, WU Haixu, ZHANG Jianjin, et al. PredRNN: A recurrent neural network for spatiotemporal predictive learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 2208–2225. doi: 10.1109/TPAMI.2022.3165153.
|
| [30] |
YAN W, ZHANG Yunzhi, ABBEEL P, et al. VideoGPT: Video generation using VQ-VAE and transformers[EB/OL]. https://arxiv.org/abs/2104.10157, 2021.
|