| Citation: | SHEN Xiaoning, SHI Jiangyi, MA Yanzhao, CHEN Wenyan, SHE Juan. Considering Workload Uncertainty in Strategy Gradient-Based Hyper-Heuristic Scheduling for Software Projects[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250769 |
| [1] |
HASTIE S. Standish group 2023 chaos report[R]. 2023. (查阅网上资料, 未找到本条文献信息, 请确认并补充报告编号).
|
| [2] |
CRAWFORD B, SOTO R, JOHNSON F, et al. A max–min ant system algorithm to solve the software project scheduling problem[J]. Expert Systems with Applications, 2014, 41(15): 6634–6645. doi: 10.1016/j.eswa.2014.05.003.
|
| [3] |
ALBA E and CHICANO J F. Software project management with GAs[J]. Information Sciences, 2007, 177(11): 2380–2401. doi: 10.1016/j.ins.2006.12.020.
|
| [4] |
LI Hongbo, ZHU Hanyu, ZHENG Linwen, et al. Software project scheduling with multitasking[J]. Economic Computation and Economic Cybernetics Studies and Research, 2023, 57(1): 153–170. doi: 10.24818/18423264/57.1.23.10.
|
| [5] |
LI Hongbo, ZHU Hanyu, ZHENG Linwen, et al. Software project scheduling under activity duration uncertainty[J]. Annals of Operations Research, 2024, 338(1): 477–512. doi: 10.1007/s10479-023-05343-0.
|
| [6] |
MASMOUDI M and HAÏT A. Project scheduling under uncertainty using fuzzy modelling and solving techniques[J]. Engineering Applications of Artificial Intelligence, 2013, 26(1): 135–149. doi: 10.1016/j.engappai.2012.07.012.
|
| [7] |
YU Hui, GAO Kaizhou, WU Naiqi, et al. Scheduling multiobjective dynamic surgery problems via Q-learning-based meta-heuristics[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(6): 3321–3333. doi: 10.1109/TSMC.2024.3352522.
|
| [8] |
MAHDAVI A, SHIRAZI B, and REZAEIAN J. Toward a scalable type-2 fuzzy model for resource-constrained project scheduling problem[J]. Applied Soft Computing, 2021, 100: 106988. doi: 10.1016/j.asoc.2020.106988.
|
| [9] |
LI Junqing, LIU Zhengmin, LI Chengdong, et al. Improved artificial immune system algorithm for type-2 fuzzy flexible job shop scheduling problem[J]. IEEE Transactions on Fuzzy Systems, 2021, 29(11): 3234–3248. doi: 10.1109/TFUZZ.2020.3016225.
|
| [10] |
JI Jianjiao, GUO Yinan, GAO Xiaozhi, et al. Q-Learning-Based hyperheuristic evolutionary algorithm for dynamic task allocation of crowdsensing[J]. IEEE Transactions on Cybernetics, 2023, 53(4): 2211–2224. doi: 10.1109/TCYB.2021.3112675.
|
| [11] |
HUANG Yao, GUO Yinan, CHEN Guoyu, et al. Q-learning assisted multi-objective evolutionary optimization for low-carbon scheduling of open-pit mine trucks[J]. Swarm and Evolutionary Computation, 2025, 92: 101778. doi: 10.1016/j.swevo.2024.101778.
|
| [12] |
杨潇, 郭一楠, 吉建娇, 等. 异构群智感知PPO多目标任务指派方法[J]. 控制理论与应用, 2024, 41(6): 1056–1066. doi: 10.7641/CTA.2023.20950.
YANG Xiao, GUO Yinan, JI Jianjiao, et al. PPO multi-objective task allocation method for heterogeneous crowd sensing[J]. Control Theory & Applications, 2024, 41(6): 1056–1066. doi: 10.7641/CTA.2023.20950.
|
| [13] |
CHEN Mengjiao, XU Jiyuan, ZHANG Wenyu, et al. A new customer-oriented multi-task scheduling model for cloud manufacturing considering available periods of services using an improved hyper-heuristic algorithm[J]. Expert Systems with Applications, 2025, 269: 126419. doi: 10.1016/j.eswa.2025.126419.
|
| [14] |
YANG Jinfeng, XU Hua, CHENG Jinhai, et al. A decomposition-based memetic algorithm to solve the biobjective green flexible job shop scheduling problem with interval type-2 fuzzy processing time[J]. Computers & Industrial Engineering, 2023, 183: 109513. doi: 10.1016/j.cie.2023.109513.
|
| [15] |
杨和林, 郑梦婷, 刘帅, 等. 恶意干扰下的无人机辅助边缘计算加权能耗与时延智能优化[J]. 电子与信息学报, 2024, 46(7): 2879–2887. doi: 10.11999/JEIT230986.
YANG Helin, ZHENG Mengting, LIU Shuai, et al. Intelligent weighted energy consumption and delay optimization for UAV-assisted MEC under malicious jamming[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2879–2887. doi: 10.11999/JEIT230986.
|
| [16] |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182–197. doi: 10.1109/4235.996017.
|
| [17] |
MINKU L L, SUDHOLT D, and YAO Xin. Improved evolutionary algorithm design for the project scheduling problem based on runtime analysis[J]. IEEE Transactions on Software Engineering, 2014, 40(1): 83–102. doi: 10.1109/TSE.2013.52.
|
| [18] |
CHEN Weineng and ZHANG Jun. Ant colony optimization for software project scheduling and staffing with an event-based scheduler[J]. IEEE Transactions on Software Engineering, 2013, 39(1): 1–17. doi: 10.1109/TSE.2012.17.
|
| [19] |
CHANG C K, JIANG H Y, DI Yu, et al. Time-line based model for software project scheduling with genetic algorithms[J]. Information and Software Technology, 2008, 50(11): 1142–1154. doi: 10.1016/j.infsof.2008.03.002.
|
| [20] |
SHEN Xiaoning, MINKU L L, MARTURI N, et al. A Q-learning-based memetic algorithm for multi-objective dynamic software project scheduling[J]. Information Sciences, 2018, 428: 1–29. doi: 10.1016/j.ins.2017.10.041.
|
| [21] |
MAHMUD S, ABBASI A, CHAKRABORTTY R K, et al. A self-adaptive hyper-heuristic based multi-objective optimisation approach for integrated supply chain scheduling problems[J]. Knowledge-Based Systems, 2022, 251: 109190. doi: 10.1016/j.knosys.2022.109190.
|
| [22] |
CIMBALA J M. Taguchi orthogonal arrays[EB/OL]. https://www.me.psu.edu/cimbala/me345web_Fall_2014/Lectures/Taguchi_orthogonal_arrays.pdf, 2025.
|
| [23] |
ZHAO Fuqing, DI Shilu, and WANG Ling. A hyperheuristic with Q-learning for the multiobjective energy-efficient distributed blocking flow shop scheduling problem[J]. IEEE Transactions on Cybernetics, 2023, 53(5): 3337–3350. doi: 10.1109/TCYB.2022.3192112.
|
| [24] |
SHAO Zhongshi, SHAO Weishi, CHEN Jianrui, et al. A feedback learning-based selection hyper-heuristic for distributed heterogeneous hybrid blocking flow-shop scheduling problem with flexible assembly and setup time[J]. Engineering Applications of Artificial Intelligence, 2024, 131: 107818. doi: 10.1016/j.engappai.2023.107818.
|
| [25] |
WU Xiuli, CONSOLI P, MINKU L, et al. An evolutionary hyper-heuristic for the software project scheduling problem[C]. Proceedings of the 14th International Conference on Parallel Problem Solving from Nature–PPSN XIV, Edinburgh, UK, 2016: 37–47. doi: 10.1007/978-3-319-45823-6_4.
|
| [26] |
LI Rui, GONG Wenyin, LU Chao, et al. A learning-based memetic algorithm for energy-efficient flexible job-shop scheduling with type-2 fuzzy processing time[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(3): 610–620. doi: 10.1109/TEVC.2022.3175832.
|
| [27] |
ZHU Lilu, WU Feng, HU Yanfeng, et al. A heuristic multi-objective task scheduling framework for container-based clouds via actor-critic reinforcement learning[J]. Neural Computing and Applications, 2023, 35(13): 9687–9710. doi: 10.1007/s00521-023-08208-6.
|