| Citation: | LI Yongbin, LIU Lian, ZHENG Jie. A Method for Named Entity Recognition in Military Intelligence Domain Using Large Language Models[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250764 |
| [1] |
LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[C]. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, USA, 2016: 260–270. doi: 10.18653/v1/N16-1030.
|
| [2] |
DAI Zhenjin, WANG Xutao, NI Pin, et al. Named entity recognition using BERT BiLSTM CRF for Chinese electronic health records[C]. Proceedings of the 2019 12th International Congress on Image and Signal Processing, Biomedical Engineering and Informatics (CISP-BMEI), Suzhou, China, 2019: 1–5. doi: 10.1109/CISP-BMEI48845.2019.8965823.
|
| [3] |
WANG Chenguang, LIU Xiao, CHEN Zui, et al. Zero-shot information extraction as a unified text-to-triple translation[C]. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Punta Cana, Dominican Republic, 2021: 1225–1238. doi: 10.18653/v1/2021.emnlp-main.94.
|
| [4] |
YANG Qingping, HU Yingpeng, CAO Rongyu, et al. Zero-shot key information extraction from mixed-style tables: Pre-training on Wikipedia[C]. Proceedings of the 2021 IEEE International Conference on Data Mining (ICDM), Auckland, New Zealand, 2021: 1451–1456. doi: 10.1109/icdm51629.2021.00187.
|
| [5] |
LU Yaojie, LIU Qing, DAI Dai, et al. Unified structure generation for universal information extraction[C]. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, Ireland, 2022: 5755–5772. doi: 10.18653/v1/2022.acl-long.395.
|
| [6] |
GUO Daya, YANG Dejian, ZHANG Haowei, et al. DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning[EB/OL]. https://arxiv.org/abs/2501.12948, 2025.
|
| [7] |
LIU Aixin, FENG Bei, XUE Bing, et al. Deepseek-v3 technical report[EB/OL]. https://arxiv.org/abs/2412.19437, 2024.
|
| [8] |
BI Xiao, CHEN Deli, CHEN Guanting, et al. DeepSeek LLM: scaling open-source language models with longtermism[EB/OL]. https://arxiv.org/abs/2401.02954, 2024.
|
| [9] |
YUAN Jingyang, GAO Huazuo, DAI Damai, et al. Native sparse attention: hardware-aligned and natively trainable sparse attention[C]. Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics, Vienna, Austria, 2025: 23078–23097. doi: 10.18653/v1/2025.acl-long.1126.
|
| [10] |
WANG Xiao, ZHOU Weikang, ZU Can, et al. InstructUIE: multi-task instruction tuning for unified information extraction[EB/OL]. https://arxiv.org/abs/2304.08085, 2023.
|
| [11] |
HU Danqing, LIU Bing, ZHU Xiaofeng, et al. Zero-shot information extraction from radiological reports using ChatGPT[J]. International Journal of Medical Informatics, 2024, 183: 105321. doi: 10.1016/j.ijmedinf.2023.105321.
|
| [12] |
KARTCHNER D, RAMALINGAM S, AL-HUSSAINI I, et al. Zero-shot information extraction for clinical meta-analysis using large language models[C]. Proceedings of the 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks, Toronto, Canada, 2023: 396–405. doi: 10.18653/v1/2023.bionlp-1.37.
|
| [13] |
张国宾, 姬红兵, 王佳萌, 等. 基于通用信息抽取大模型的特定领域文本实体关系抽取研究[J]. 中国信息界, 2024(8): 159–161.
ZHANG Guobin, JI Hongbing, WANG Jiameng, et al. Research on entity-relationship extraction from domain-specific texts leveraging generalized information extraction large models[J]. Information China, 2024(8): 159–161. (查阅网上资料, 未找到对应英文翻译信息, 请确认).
|
| [14] |
皮乾坤, 卢记仓, 祝涛杰, 等. 一种基于大语言模型增强的零样本知识抽取方法[J/OL]. 计算机科学. https://link.cnki.net/urlid/50.1075.TP.20250123.1638.012, 2025.
PI Qiankun, LU Jicang, ZHU Taojie, et al. A zero-shot knowledge extraction method based on large language model enhanced[J/OL]. Computer Science. https://link.cnki.net/urlid/50.1075.TP.20250123.1638.012, 2025.
|
| [15] |
户才顺. 基于大语言模型的审计领域命名实体识别算法研究[J]. 计算机科学, 2025, 52(S1): 72–75.
LU Caishun. Study on named entity recognition algorithms in audit domain based on large language models[J]. Computer Science, 2025, 52(S1): 72–75.
|
| [16] |
胡慧云, 葛杨, 崔凌潇, 等. 融合多模态信息与大语言模型的生成式命名实体识别方法[J/OL]. 计算机工程与应用. https://doi.org/10.3778/j.issn.1002-8331.2503-0243, 2025.
HU Huiyun, GE Yang, CUI Lingxiao, et al. Generative named entity recognition method integrating multimodal information and large language models[J/OL]. Computer Engineering and Applications. https://doi.org/10.3778/j.issn.1002-8331.2503-0243, 2025.
|
| [17] |
HU E J, SHEN Y, WALLIS P, et al. LoRA: low-rank adaptation of large language models[EB/OL]. https://arxiv.org/abs/2106.09685, 2021.
|
| [18] |
LEWIS P, PEREZ E, PIKTUS A, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks[C]. Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 793. doi: 10.5555/3495724.3496517.
|