| Citation: | ZHAO Shen, LI Guangxuan, ZHOU Xiancheng, HUANG Wendi, YANG Lingling, GAO Liping. Multi-UAV RF Signals CNN|Triplet-DNN Heterogeneous Network Feature Extraction and Type Recognition[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250757 |
| [1] |
RAHMAN M S, KHALIL I, and ATIQUZZAMAN M. Blockchain-powered policy enforcement for ensuring flight compliance in drone-based service systems[J]. IEEE Network, 2021, 35(1): 116–123. doi: 10.1109/MNET.011.2000219.
|
| [2] |
SHAN Lin, MIURA R, MATSUDA T, et al. Vehicle-to-vehicle based autonomous flight coordination control system for safer operation of unmanned aerial vehicles[J]. Drones, 2023, 7(11): 669. doi: 10.3390/drones7110669.
|
| [3] |
赵慎, 诸皓冉, 周超, 等. 声学探测无人机中的麦克风立体阵列优化设计[J]. 电子测量与仪器学报, 2025, 39(5): 155–165. doi: 10.13382/j.jemi.B2407714.
ZHAO Shen, ZHU Haoran, ZHOU Chao, et al. Optimization design of microphone array for acoustic detection drones[J]. Journal of Electronic Measurement and Instrumentation, 2025, 39(5): 155–165. doi: 10.13382/j.jemi.B2407714.
|
| [4] |
CAI Zhenxin, WANG Yu, JIANG Qi, et al. Toward intelligent lightweight and efficient UAV identification with RF fingerprinting[J]. IEEE Internet of Things Journal, 2024, 11(15): 26329–26339. doi: 10.1109/JIOT.2024.3395466.
|
| [5] |
MAGANAHALLI G M, MARUTHI A, UTTARKAR C, et al. Neural network-based classification of unmanned aerial vehicle flight modes using convolution and transfer learning[J]. AIP Conference Proceedings, 2025, 3278(1): 020025. doi: 10.1063/5.0262989.
|
| [6] |
FENG Junhao, TANG Xiaogang, ZHANG Binquan, et al. A lightweight deep learning RF fingerprint recognition method[C]. Proceedings of the 4th International Conference on Communications, Information System and Computer Engineering, Shenzhen, China, 2022: 452–457. doi: 10.1109/CISCE55963.2022.9851177.
|
| [7] |
LI Chaoqun, WANG Jinming, WANG Wenyan, et al. RF-based on feature fusion and convolutional neural network classification of UAVs[C]. Proceedings of the IEEE 8th International Conference on Computer and Communications, Chengdu, China, 2022: 1899–1904. doi: 10.1109/ICCC56324.2022.10065895.
|
| [8] |
周景贤, 李希娜. 基于改进卷积神经网络和射频指纹的无人机检测与识别[J]. 计算机应用, 2024, 44(3): 876–882. doi: 10.11772/j.issn.1001-9081.2023030299.
ZHOU Jingxian and LI Xina. UAV detection and recognition based on improved convolutional neural network and radio frequency fingerprint[J]. Journal of Computer Applications, 2024, 44(3): 876–882. doi: 10.11772/j.issn.1001-9081.2023030299.
|
| [9] |
晏行伟, 孔令轩, 刘坤, 等. 基于MobileNet-DOA的无人机射频信号识别方法[J]. 雷达科学与技术, 2025, 23(1): 57–66. doi: 10.3969/j.issn.1672-2337.2025.01.006.
YAN Xingwei, KONG Lingxuan, LIU Kun, et al. Drone radio frequency signal identification method based on MobileNet-DOA[J]. Radar Science and Technology, 2025, 23(1): 57–66. doi: 10.3969/j.issn.1672-2337.2025.01.006.
|
| [10] |
曾政智, 周嘉伟, 罗正华. 同频段混合信号中的无人机信号盲检测识别[J]. 电讯技术, 2020, 60(6): 689–694. doi: 10.3969/j.issn.1001-893x.2020.06.013.
ZENG Zhengzhi, ZHOU Jiawei, and LUO Zhenghua. Blind detection and recognition of UAV signal in mixed signal in same frequency band[J]. Telecommunication Engineering, 2020, 60(6): 689–694. doi: 10.3969/j.issn.1001-893x.2020.06.013.
|
| [11] |
SAZDIĆ-JOTIĆ B, POKRAJAC I, BAJČETIĆ J, et al. Single and multiple drones detection and identification using RF based deep learning algorithm[J]. Expert Systems with Applications, 2022, 187: 115928. doi: 10.1016/j.eswa.2021.115928.
|
| [12] |
XU Chengtao, CHEN Bowen, LIU Yongxin, et al. RF fingerprint measurement for detecting multiple amateur drones based on STFT and feature reduction[C]. 2020 Integrated Communications Navigation and Surveillance Conference (ICNS), Herndon, USA, 2020: 4G1. doi: 10.1109/ICNS50378.2020.9223013.
|
| [13] |
ZHANG Jiangfan, ZHANG Yan, SHI Zhiguang, et al. Unmanned aerial vehicle object detection based on information-preserving and fine-grained feature aggregation[J]. Remote Sensing, 2024, 16(14): 2590. doi: 10.3390/rs16142590.
|
| [14] |
张萌, 李响, 张经纬. 基于图像偏移角和多分支卷积神经网络的旋转不变模型设计[J]. 电子与信息学报, 2024, 46(12): 4522–4528. doi: 10.11999/JEIT240417.
ZHANG Meng, LI Xiang, and ZHANG Jingwei. Design of rotation invariant model based on image offset angle and multibranch convolutional neural networks[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4522–4528. doi: 10.11999/JEIT240417.
|
| [15] |
ZHENG Yunfei, ZHANG Xuejun, WANG Shenghan, et al. Convolutional neural network and ensemble learning-based unmanned aerial vehicles radio frequency fingerprinting identification[J]. Drones, 2024, 8(8): 391. doi: 10.3390/drones8080391.
|
| [16] |
CHA B R and VAIDYA B. Enhancing human activity recognition with Siamese networks: A comparative study of contrastive and triplet learning approaches[J]. Electronics, 2024, 13(9): 1739. doi: 10.3390/electronics13091739.
|
| [17] |
SINGH G, STEFENON S F, and YOW K C. The shallowest transparent and interpretable deep neural network for image recognition[J]. Scientific Reports, 2025, 15(1): 13940. doi: 10.1038/s41598-025-92945-2.
|
| [18] |
俞宁宁, 毛盛健, 周成伟, 等. DroneRFa: 用于侦测低空无人机的大规模无人机射频信号数据集[J]. 电子与信息学报, 2024, 46(4): 1147–1156. doi: 10.11999/JEIT230570.
YU Ningning, MAO Shengjian, ZHOU Chengwei, et al. DroneRFa: A large-scale dataset of drone radio frequency signals for detecting low-altitude drones[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1147–1156. doi: 10.11999/JEIT230570.
|
| [19] |
HAN Jia, YU Zhiyong, YANG Jian, et al. Real-world UAV recognition based on radio frequency fingerprinting with transformer[J]. IET Communications, 2025, 19(1): e70004. doi: 10.1049/cmu2.70004.
|
| [20] |
ROMAN-RANGEL E and MARCHAND-MAILLET S. Inductive t-SNE via deep learning to visualize multi-label images[J]. Engineering Applications of Artificial Intelligence, 2019, 81: 336–345. doi: 10.1016/j.engappai.2019.01.015.
|