| Citation: | ZHU Zhengyu, WEN Xinping, LI Xingwang, WEI Zhiqing, ZHANG Peichang, LIU Fan, FENG Zhiyong. An Overview on Integrated Sensing and Communication for Low altitude economy[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250747 |
| [1] |
钟成林, 胡雪萍. 低空经济高质量发展的新质生产力逻辑与提升路径[J]. 深圳大学学报(人文社会科学版), 2024, 41(5): 84–93. doi: 10.3969/j.issn.1000-260X.2024.05.008.
ZHONG Chenglin and HU Xueping. The new quality productivity logic and promotion path for high-quality development of low altitude economy[J]. Journal of Shenzhen University (Humanities & Social Sciences), 2024, 41(5): 84–93. doi: 10.3969/j.issn.1000-260X.2024.05.008.
|
| [2] |
中国电信集团有限公司, 爱立信, 诺基亚, 等. 通感一体低空网络白皮书[R]. 2024. (查阅网上资料, 未找到报告编号信息, 请确认).
China Telecom Corp Ltd, Ericsson, Nokia, et al. The low-altitude network by integrated sensing and communication[R]. 2024.
|
| [3] |
林丽芸, 孔德智. 关于低空智联网发展的思考[J]. 电子质量, 2024(2): 105–109. doi: 10.3969/j.issn.1003-0107.2024.02.022.
LIN Liyun and KONG Dezhi. Reflections on the development of low-altitude internet of intelligences[J]. Electronics Quality, 2024(2): 105–109. doi: 10.3969/j.issn.1003-0107.2024.02.022.
|
| [4] |
CUI Yuanhao, LIU Fan, JING Xiaojun, et al. Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges[J]. IEEE Network, 2021, 35(5): 158–167. doi: 10.1109/MNET.010.2100152.
|
| [5] |
MU Junsheng, GONG Yi, ZHANG Fangpei, et al. Integrated sensing and communication-enabled predictive beamforming with deep learning in vehicular networks[J]. IEEE Communications Letters, 2021, 25(10): 3301–3304. doi: 10.1109/LCOMM.2021.3098748.
|
| [6] |
ZHANG J A, RAHMAN M L, WU Kai, et al. Enabling joint communication and radar sensing in mobile networks - a survey[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 306–345. doi: 10.1109/COMST.2021.3122519.
|
| [7] |
谢鑫, 邓云开, 杨志军, 等. 基于地形辅助的无人机载InSAR图像分区配准方法[J]. 雷达学报, 2024, 13(1): 116–133. doi: 10.12000/JR23182.
XIE Xin, DENG Yunkai, YANG Zhijun, et al. Topography-assisted UAV InSAR image registration method with image partition[J]. Journal of Radars, 2024, 13(1): 116–133. doi: 10.12000/JR23182.
|
| [8] |
KIM D, LEE J, and QUEK T Q S. Multi-layer unmanned aerial vehicle networks: Modeling and performance analysis[J]. IEEE Transactions on Wireless Communications, 2020, 19(1): 325–339. doi: 10.1109/TWC.2019.2944378.
|
| [9] |
HASSANIEN A, AMIN M G, ZHANG Y D, et al. Signaling strategies for dual-function radar communications: An overview[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(10): 36–45. doi: 10.1109/MAES.2016.150225.
|
| [10] |
WANG Xinyi, FEI Zesong, ZHANG A J, et al. Constrained utility maximization in dual-functional radar-communication multi-UAV networks[J]. IEEE Transactions on Communications, 2021, 69(4): 2660–2672. doi: 10.1109/TCOMM.2020.3044616.
|
| [11] |
KUMARI P, MYERS N J, and HEATH R W. Adaptive and fast combined waveform-beamforming design for MMWave automotive joint communication-radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(4): 996–1012. doi: 10.1109/JSTSP.2021.3071592.
|
| [12] |
KESKIN M F, WYMEERSCH H, and KOIVUNEN V. MIMO-OFDM joint radar-communications: Is ICI friend or foe?[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1393–1408. doi: 10.1109/JSTSP.2021.3109431.
|
| [13] |
HUANG Tianyao, SHLEZINGER N, XU Xingyu, et al. MAJoRCom: A dual-function radar communication system using index modulation[J]. IEEE Transactions on Signal Processing, 2020, 68: 3423–3438. doi: 10.1109/TSP.2020.2994394.
|
| [14] |
HASSANIEN A, AMIN M G, ZHANG Y D, et al. Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2168–2181. doi: 10.1109/TSP.2015.2505667.
|
| [15] |
WEI Zhongxiang, LIU Fan, MASOUROS C, et al. Toward multi-functional 6G wireless networks: Integrating sensing, communication, and security[J]. IEEE Communications Magazine, 2022, 60(4): 65–71. doi: 10.1109/MCOM.002.2100972.
|
| [16] |
YAO Xue, YANG Zhihang, QIU Hui, et al. DFRC signal design with hybrid index modulation[J]. IEEE Sensors Journal, 2024, 24(13): 20855–20867. doi: 10.1109/JSEN.2024.3395789.
|
| [17] |
MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. Spatial modulation for joint radar-communications systems: Design, analysis, and hardware prototype[J]. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2283–2298. doi: 10.1109/TVT.2021.3056408.
|
| [18] |
XU Rui, WEN Ruiming, CUI Guolong, et al. Radar performance degradation elimination for sub-pulse-based FMCW in DFRC[J]. IEEE Signal Processing Letters, 2023, 30: 1582–1586. doi: 10.1109/LSP.2023.3327539.
|
| [19] |
WEN Cai and DAVIDSON T N. Transceiver design for MIMO-DFRC systems[C]. Proceedings of the ICASSP 2023 – 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023: 1–5. doi: 10.1109/ICASSP49357.2023.10096008.
|
| [20] |
LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648.
|
| [21] |
KOBAYASHI M, CAIRE G, and KRAMER G. Joint state sensing and communication: Optimal tradeoff for a memoryless case[C]. Proceedings of the 2018 IEEE International Symposium on Information Theory (ISIT), Vail, USA, 2018: 111–115. doi: 10.1109/ISIT.2018.8437621.
|
| [22] |
ZHANG Wenyi, VEDANTAM S, MITRA U. Joint transmission and state estimation: A constrained channel coding approach[J]. IEEE Transactions on Information Theory, 2011, 57(10): 7084–7095. doi: 10.1109/TIT.2011.2158488.
|
| [23] |
CHU Chunhua, CHEN Yijun, ZHANG Qun, et al. MIMO radar waveform joint optimization design in time and frequency domain[C]. Proceedings of the 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 2020: 1–5. doi: 10.1109/SAM48682.2020.9104351.
|
| [24] |
HASSANIEN A, AMIN M G, ABOUTANIOS W, et al. Dual-function radar communication systems: A solution to the spectrum congestion problem[J]. IEEE Signal Processing Magazine, 2019, 36(5): 115–126. doi: 10.1109/MSP.2019.2900571.
|
| [25] |
AVDOGDU C, GARCIA N, and WYMEERSCH H. Improved pedestrian detection under mutual interference by FMCW radar communications[C]. Proceedings of the 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy, 2018: 101–105. doi: 10.1109/PIMRC.2018.8581028.
|
| [26] |
BRAUN M, STURM C, NIETHAMMER A, et al. Parametrization of joint OFDM-based radar and communication systems for vehicular applications[C]. Proceedings of the 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Tokyo, Japan, 2009: 3020–3024. doi: 10.1109/PIMRC.2009.5449769.
|
| [27] |
CAI Yuanxin, WEI Zhiqiang, LI Ruide, et al. Joint trajectory and resource allocation design for energy-efficient secure UAV communication systems[J]. IEEE Transactions on Communications, 2020, 68(7): 4536–4553. doi: 10.1109/TCOMM.2020.2982152.
|
| [28] |
曾婷, 才宇, 张捷宝, 等. 面向6G通信感知一体化的关键技术和系统架构研究[J]. 无线电通信技术, 2024, 50(3): 461–468. doi: 10.3969/j.issn.1003-3114.2024.03.007.
ZENG Ting, CAI Yu, ZHANG Jiebao, et al. Study on key technologies and system architecture of integrated sensing and communication for 6G[J]. Radio Communications Technology, 2024, 50(3): 461–468. doi: 10.3969/j.issn.1003-3114.2024.03.007.
|
| [29] |
ZHOU Lingyun, CHEN Xihan, HONG Mingyi, et al. Efficient resource allocation for multi-UAV communication against adjacent and co-channel interference[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10222–10235. doi: 10.1109/TVT.2021.3104279.
|
| [30] |
LYU Jiangbin, ZENG Yong, ZHANG Rui, et al. Placement optimization of UAV-mounted mobile base stations[J]. IEEE Communications Letters, 2017, 21(3): 604–607. doi: 10.1109/LCOMM.2016.2633248.
|
| [31] |
SOHAIL M F, LEOW C Y, and WON S. Non-orthogonal multiple access for unmanned aerial vehicle assisted communication[J]. IEEE Access, 2018, 6: 22716–22727. doi: 10.1109/ACCESS.2018.2826650.
|
| [32] |
LIU Yuanwei, QIN Zhijin, ELKASHLAN M, et al. Nonorthogonal multiple access for 5G and beyond[J]. Proceedings of the IEEE, 2017, 105(12): 2347–2381. doi: 10.1109/JPROC.2017.2768666.
|
| [33] |
ZHOU Fuhui, WU Yongpeng, HU R Q, et al. Energy-efficient NOMA enabled heterogeneous cloud radio access networks[J]. IEEE Network, 2018, 32(2): 152–160. doi: 10.1109/MNET.2017.1700208.
|
| [34] |
王炳文, 唐菁敏, 宋耀莲. 智能反射面辅助无人机中继的资源优化算法[J]. 数据通信, 2024(3): 34–40. doi: 10.3969/j.issn.1002-5057.2024.03.008.
WANG Bingwen, TANG Jingmin, and SONG Yaolian. Resource optimization algorithm for intelligent reflective surface assisted UAV relay[J]. Data Communications, 2024(3): 34–40. doi: 10.3969/j.issn.1002-5057.2024.03.008.
|
| [35] |
俞荣康, 胡晗, 杨龙祥. 智能反射面辅助的无人机认知网络资源优化算法[J]. 南京邮电大学学报(自然科学版), 2025, 45(3): 28–37. doi: 10.14132/j.cnki.1673-5439.2025.03.004.
YU Rongkang, HU Han, and YANG Longxiang. A resource optimization algorithm for intelligent reflective surface-assisted UAV cognitive network[J]. Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition), 2025, 45(3): 28–37. doi: 10.14132/j.cnki.1673-5439.2025.03.004.
|
| [36] |
袁伟杰, 伍军, 时玉叶. 基于多无人机协作通感一体化的隐蔽通信设计[J]. 雷达学报(中英文), 2025, 14(4): 797–808. doi: 10.12000/JR25018.
YUAN Weijie, WU Jun, and SHI Yuye. Multi-UAV collaborative covert communications: An ISAC-based approach[J]. Journal of Radars, 2025, 14(4): 797–808. doi: 10.12000/JR25018.
|
| [37] |
孙君, 徐金童. 无人机通感一体化中基于干扰建模的多维能效方案[J/OL]. 物联网学报. https://link.cnki.net/urlid/10.1491.TP.20250807.1613.002, 2025.
SUN Jun and XU Jintong. A multi-dimensional energy efficiency scheme based on interference modeling in unmanned aerial vehicle integrated sensing and communication[J/OL]. Chinese Journal on Internet of Things. https://link.cnki.net/urlid/10.1491.TP.20250807.1613.002, 2025.
|
| [38] |
赵川斌, 张腾宇, 冯源, 等. 面向低空无人机的通感一体化关键技术及原型验证研究[J]. 物联网学报, 2025, 9(2): 27–38. doi: 10.11959/j.issn.2096-3750.2025.00486.
ZHAO Chuanbin, ZHANG Tengyu, FENG Yuan, et al. Key technologies and prototype validation research of integrated sensing and communications for low altitude UAV[J]. Chinese Journal on Internet of Things, 2025, 9(2): 27–38. doi: 10.11959/j.issn.2096-3750.2025.00486.
|
| [39] |
贡文新, 余泽琰, 杨柳旺, 等. 基于毫米波雷达的无人机障碍物分类方法[J]. 雷达科学与技术, 2025, 23(3): 317–327. doi: 10.3969/j.issn.1672-2337.2025.03.009.
GONG Wenxin, YU Zeyan, YANG Liuwang, et al. Millimeter-wave radar-based obstacle classification method for unmanned aerial vehicles[J]. Radar Science and Technology, 2025, 23(3): 317–327. doi: 10.3969/j.issn.1672-2337.2025.03.009.
|
| [40] |
王迎山. 毫米波通信技术在5G无人驾驶中的应用研究[J]. 长江信息通信, 2025, 38(2): 13–15. doi: 10.20153/j.issn.2096-9759.2025.02.004.
WANG Yingshan. Research on the application of millimeter wave communication technology in 5G autonomous driving[J]. Changjiang Information & Communications, 2025, 38(2): 13–15. doi: 10.20153/j.issn.2096-9759.2025.02.004.
|
| [41] |
柴蓉, 王丙燕, 孙瑞锦, 等. 基于系统成本函数优化的无人机辅助通感一体化系统数据调度、雷达预编码及飞行轨迹优化方法[J]. 电子学报, 2025, 53(3): 744–753. doi: 10.12263/DZXB.20240656.
CHAI Rong, WANG Bingyan, SUN Ruijin, et al. System cost function optimization-based data scheduling, radar precoding and flight trajectory design for UAV-assisted integrated sensing and communication systems[J]. Acta Electronica Sinica, 2025, 53(3): 744–753. doi: 10.12263/DZXB.20240656.
|
| [42] |
吕芸昕, 苏颖, 张静. 基于NOMA的无人机通感一体化系统的轨迹与波束成形联合优化设计[J]. 上海师范大学学报(自然科学版中英文), 2025, 54(2): 172–179. doi: 10.20192/j.cnki.JSHNU(NS).2025.02.007.
LÜ Yunxin, SU Ying, and ZHANG Jing. Joint trajectory and beamforming design based on integrated sensing and communication for NOMA-enabled UAV[J]. Journal of Shanghai Normal University (Natural Sciences), 2025, 54(2): 172‒179. doi: 10.20192/j.cnki.JSHNU(NS).2025.02.007.
|
| [43] |
SAIF M and VALAEE S. RIS alignment via virtual partitioning for resilient uplink multi-RIS-assisted UAV communications[J]. IEEE Transactions on Communications, 2025, 73(8): 6764–6779. doi: 10.1109/TCOMM.2025.3534527.
|
| [44] |
HEMAVATHY P and PRIYA S B M. Energy-efficient UAV integrated RIS for NOMA communication[C]. Proceedings of the 2025 1st International Conference on Radio Frequency Communication and Networks (RFCoN), Thanjavur, India, 2025: 1–6. doi: 10.1109/RFCoN62306.2025.11085332.
|
| [45] |
SEONG H, KIM T, SONG J, et al. Hierarchical multi-agent reinforcement learning-based UAV control for wireless covert communications[C]. Proceedings of the 2025 IEEE 22nd Consumer Communications & Networking Conference (CCNC), Las Vegas, USA, 2025: 1–6. doi: 10.1109/CCNC54725.2025.10976044.
|
| [46] |
GAO Chan, TIAN Linying, ZHAO Qiuxia, et al. Covert and secure communication in untrusted UAV-assisted wireless systems[J]. IEEE Internet of Things Journal, 2025, 12(17): 35329–35339. doi: 10.1109/JIOT.2025.3578987.
|
| [47] |
ZENG Wen, FU Shu, and DI Boya. Optimal covert age of information for ARIS-assisted covert communication system[J]. IEEE Wireless Communications Letters, 2025, 14(8): 2277–2281. doi: 10.1109/LWC.2025.3548902.
|
| [48] |
ZHANG Yi, LIU Yu, LI Xinru, et al. A novel space-time-frequency non-stationary UAV-to-USV channel model for MMWave maritime communications[J]. IEEE Wireless Communications Letters, 2025, 14(11): 3515–3519. doi: 10.1109/LWC.2025.3596556.
|
| [49] |
JIN Xin, AN Jianping, DU Changhao, et al. Frequency-offset information aided self time synchronization scheme for high-dynamic multi-UAV networks[J]. IEEE Transactions on Wireless Communications, 2024, 23(1): 607–620. doi: 10.1109/TWC.2023.3280536.
|
| [50] |
CHEN Xinying, AN Jianping, ZHAO Nan, et al. UAV relayed covert wireless networks: Expand hiding range via drones[J]. IEEE Network, 2022, 36(4): 226–232. doi: 10.1109/MNET.104.2100496.
|
| [51] |
VAN HUYNH D, LI Yijiu, MASARACCHIA A, et al. Optimal resource allocation for 6G UAV-enabled mobile edge computing with mission-critical applications[C]. Proceedings of the 2023 IEEE International Conference on Metaverse Computing, Networking and Applications (MetaCom), Kyoto, Japan, 2023: 720–723. doi: 10.1109/MetaCom57706.2023.00135.
|
| [52] |
ZENG Yong, ZHANG Rui, and LIM T J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5): 36–42. doi: 10.1109/MCOM.2016.7470933.
|
| [53] |
NGUYEN M T and LE Longbao. NOMA user pairing and UAV placement in UAV-based wireless networks[C]. Proceedings of the ICC 2019 - 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019: 1–6. doi: 10.1109/ICC.2019.8761606.
|
| [54] |
ZHAO Nan, LU Weidang, SHENG Min, et al. UAV-assisted emergency networks in disasters[J]. IEEE Wireless Communications, 2019, 26(1): 45–51. doi: 10.1109/MWC.2018.1800160.
|
| [55] |
LIU Yuanwei, QIN Zhijin, CAI Yunlong, et al. UAV communications based on non-orthogonal multiple access[J]. IEEE Wireless Communications, 2019, 26(1): 52–57. doi: 10.1109/MWC.2018.1800196.
|
| [56] |
JIANG Wangjun, WANG Ailing, WEI Zhiqing, et al. Improve sensing and communication performance of UAV via integrated sensing and communication[C]. Proceedings of the 2021 IEEE 21st International Conference on Communication Technology (ICCT), Tianjin, China, 2021: 644–648. doi: 10.1109/ICCT52962.2021.9657955.
|
| [57] |
WANG Zhe, DUAN Lingjie, and ZHANG Rui. Adaptive deployment for UAV-aided communication networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(9): 4531–4543. doi: 10.1109/TWC.2019.2926279.
|
| [58] |
CHEN Mingzhe, SAAD W, and YIN Changchuan. Liquid state machine learning for resource and cache management in LTE-U Unmanned Aerial Vehicle (UAV) networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(3): 1504–1517. doi: 10.1109/TWC.2019.2891629.
|
| [59] |
GALKIN B, KIBILDA J, and DASILVA L A. Deployment of UAV-mounted access points according to spatial user locations in two-tier cellular networks[C]. Proceedings of the 2016 Wireless Days (WD), Toulouse, France, 2016: 1–6. doi: 10.1109/WD.2016.7461487.
|
| [60] |
BHUSHAN N, LI Junyi, MALLADI D, et al. Network densification: The dominant theme for wireless evolution into 5G[J]. IEEE Communications Magazine, 2014, 52(2): 82–89. doi: 10.1109/MCOM.2014.6736747.
|
| [61] |
李兴旺, 田志发, 张建华, 等. IRS辅助NOMA网络下隐蔽通信性能研究[J]. 中国科学: 信息科学, 2024, 54(6): 1502–1515. doi: 10.1360/SSI-2023-0174.
LI Xingwang, TIAN Zhifa, ZHANG Jianhua, et al. Performance analysis of covert communication in IRS-assisted NOMA networks[J]. Scientia Sinica Informationis, 2024, 54(6): 1502–1515. doi: 10.1360/SSI-2023-0174.
|
| [62] |
WANG Chao, CHEN Xinying, AN Jianping, et al. Covert communication assisted by UAV-IRS[J]. IEEE Transactions on Communications, 2023, 71(1): 357–369. doi: 10.1109/TCOMM.2022.3220903.
|
| [63] |
LI Zan, LIAO Xiaomin, SHI Jia, et al. MD-GAN-based UAV trajectory and power optimization for cognitive covert communications[J]. IEEE Internet of Things Journal, 2022, 9(12): 10187–10199. doi: 10.1109/JIOT.2021.3122014.
|
| [64] |
HU Jinsong, GUO Mingqian, YAN Shihao, et al. Deep reinforcement learning enabled covert transmission with UAV[J]. IEEE Wireless Communications Letters, 2023, 12(5): 917–921. doi: 10.1109/LWC.2023.3251357.
|
| [65] |
WANG Yida, YAN Shihao, ZHOU Xiaobo, et al. Covert communication with energy replenishment constraints in UAV networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(9): 10143–10148. doi: 10.1109/TVT.2022.3178021.
|
| [66] |
LU Xingbo, YANG Weiwei, YAN Shihao, et al. Covertness and timeliness of data collection in UAV-aided wireless-powered IoT[J]. IEEE Internet of Things Journal, 2022, 9(14): 12573–12587. doi: 10.1109/JIOT.2021.3137846.
|
| [67] |
YAN Shihao, HANLY S V, and COLLINGS I B. Optimal transmit power and flying location for UAV covert wireless communications[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(11): 3321–3333. doi: 10.1109/JSAC.2021.3088667.
|
| [68] |
RAO Hangmei, XIAO Sa, YAN Shihao, et al. Optimal geometric solutions to UAV-enabled covert communications in line-of-sight scenarios[J]. IEEE Transactions on Wireless Communications, 2022, 21(12): 10633–10647. doi: 10.1109/TWC.2022.3185492.
|
| [69] |
LIU Pengpeng, LI Zan, SI Jiangbo, et al. Joint information-theoretic secrecy and covertness for UAV-assisted wireless transmission with finite blocklength[J]. IEEE Transactions on Vehicular Technology, 2023, 72(8): 10187–10199. doi: 10.1109/TVT.2023.3254882.
|
| [70] |
ZHOU Xiaobo, YAN Shihao, NG D W K, et al. Three-dimensional placement and transmit power design for UAV covert communications[J]. IEEE Transactions on Vehicular Technology, 2021, 70(12): 13424–13429. doi: 10.1109/TVT.2021.3121298.
|
| [71] |
潘钰, 胡航, 金虎, 等. 非授权频段下无人机辅助通信的轨迹与资源分配优化[J]. 电子与信息学报, 2024, 46(11): 4287–4294. doi: 10.11999/JEIT240275.
PAN Yu, HU Hang, JIN Hu, et al. Trajectory and resource allocation optimization for unmanned aerial vehicles assisted communications in unlicensed bands[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4287–4294. doi: 10.11999/JEIT240275.
|
| [72] |
MAO Haobin, LIU Yanming, XIAO Zhenyu, et al. Joint resource allocation and 3-D deployment for multi-UAV covert communications[J]. IEEE Internet of Things Journal, 2024, 11(1): 559–572. doi: 10.1109/JIOT.2023.3287838.
|
| [73] |
YANG Fangtao, WANG Chao, XIONG Jun, et al. UAV-enabled robust covert communication against active wardens[J]. IEEE Transactions on Vehicular Technology, 2024, 73(6): 9159–9164. doi: 10.1109/TVT.2024.3360998.
|
| [74] |
JIANG Xu, YANG Zhutian, ZHAO Nan, et al. Resource allocation and trajectory optimization for UAV-enabled multi-user covert communications[J]. IEEE Transactions on Vehicular Technology, 2021, 70(2): 1989–1994. doi: 10.1109/TVT.2021.3053936.
|
| [75] |
李兴旺, 王新莹, 田心记, 等. 基于非理想条件可重构智能超表面辅助无线携能通信-非正交多址接入系统通感性能研究[J]. 电子与信息学报, 2024, 46(6): 2434–2442. doi: 10.11999/JEIT231395.
LI Xingwang, WANG Xinying, TIAN Xinji, et al. Communication and sensing performance analysis of RIS-assisted SWIPT-NOMA system under non-ideal conditions[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2434–2442. doi: 10.11999/JEIT231395.
|
| [76] |
WANG Liang, WANG Kezhi, PAN Cunhua, et al. Joint trajectory and passive beamforming design for intelligent reflecting surface-aided UAV communications: A deep reinforcement learning approach[J]. IEEE Transactions on Mobile Computing, 2023, 22(11): 6543–6553. doi: 10.1109/TMC.2022.3200998.
|
| [77] |
CHANG Bo, TANG Wei, YAN Xiaoyu, et al. Integrated scheduling of sensing, communication, and control for mmWave/THz communications in cellular connected UAV networks[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2103–2113. doi: 10.1109/JSAC.2022.3157366.
|
| [78] |
XU Jinlei, LI Dongdong, ZHU Zhengyu, et al. Aerial IRS aided anti-jamming scheme for ISAC[C]. Proceedings of the 2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall), Hong Kong, China, 2023: 1–5. doi: 10.1109/VTC2023-Fall60731.2023.10333422.
|
| [79] |
NARMEEN R, ALMADHOR A, ALKHAYYAT A, et al. Secure beamforming for unmanned aerial vehicles equipped reconfigurable intelligent surfaces[J]. IEEE Internet of Things Magazine, 2024, 7(2): 30–37. doi: 10.1109/IOTM.001.2300238.
|
| [80] |
ABDALLA A S and MAROJEVIC V. ARIS for safeguarding MISO wireless communications: A deep reinforcement learning approach[C]. Proceedings of the 2022 5th International Conference on Advanced Communication Technologies and Networking (CommNet), Marrakech, Morocco, 2022: 1–6. doi: 10.1109/CommNet56067.2022.9993913.
|
| [81] |
WEI Zhiqiang, CAI Yuanxin, SUN Zhuo, et al. Sum-rate maximization for IRS-assisted UAV OFDMA communication systems[J]. IEEE Transactions on Wireless Communications, 2021, 20(4): 2530–2550. doi: 10.1109/TWC.2020.3042977.
|
| [82] |
LIANG Haoyu, WU Jun, LIU Tianle, et al. Efficient cooperative spectrum sensing in UAV-assisted cognitive wireless sensor networks[J]. IEEE Sensors Letters, 2024, 8(10): 7500904. doi: 10.1109/LSENS.2024.3454718.
|
| [83] |
DO Q T, LAKEW D S, TRAN A T, et al. A review on recent approaches in mmWave UAV-aided communication networks and open issues[C]. Proceedings of the 2023 International Conference on Information Networking (ICOIN), Bangkok, Thailand, 2023: 728–731. doi: 10.1109/ICOIN56518.2023.10049043.
|
| [84] |
OUYANG Xing and ZHAO Jian. Orthogonal chirp division multiplexing[J]. IEEE Transactions on Communications, 2016, 64(9): 3946–3957. doi: 10.1109/TCOMM.2016.2594792.
|
| [85] |
GUO Xufeng, CHEN Yuanbin, and WANG Ying. Learning-based robust and secure transmission for reconfigurable intelligent surface aided millimeter wave UAV communications[J]. IEEE Wireless Communications Letters, 2021, 10(8): 1795–1799. doi: 10.1109/LWC.2021.3081464.
|
| [86] |
KISHK M, BADER A, and ALOUINI M S. Aerial base station deployment in 6G cellular networks using tethered drones: The mobility and endurance tradeoff[J]. IEEE Vehicular Technology Magazine, 2020, 15(4): 103–111. doi: 10.1109/MVT.2020.3017885.
|
| [87] |
WU Qingqing, XU Jie, ZENG Yong, et al. A comprehensive overview on 5G-and-beyond networks with UAVs: From communications to sensing and intelligence[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(10): 2912–2945. doi: 10.1109/JSAC.2021.3088681.
|
| [88] |
XIANG Lanhua, WANG Fengyu, and XU Wenjun. Multi-target tracking with dual-functional radar-communication UAV swarm[J]. IEEE Communications Letters, 2024, 28(9): 2031–2035. doi: 10.1109/LCOMM.2024.3434446.
|
| [89] |
LIU Yuemin, LIU Xin, LIU Zechen, et al. Secure rate maximization for ISAC-UAV assisted communication amidst multiple eavesdroppers[J]. IEEE Transactions on Vehicular Technology, 2024, 73(10): 15843–15847. doi: 10.1109/TVT.2024.3412805.
|
| [90] |
ZHANG Jia, WU Jun, GAN Jipeng, et al. Energy efficiency of cooperative spectrum sensing under sensing delay constraint for CUAVNs[C]. Proceedings of the 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland, 2022: 1–6. doi: 10.1109/VTC2022-Spring54318.2022.9860525.
|