| Citation: | XIE Qingkun, XU Changzhi, BIAN Jingying, ZHENG Xiaosong, ZHANG Bo. Full Field-of-View Optical Calibration with Microradian-Level Accuracy for Space Laser Communication Terminals on LEO Constellation Applications[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250734 |
| [1] |
KODHELI O, LAGUNAS E, MATURO N, et al. Satellite communications in the New Space Era: A survey and future challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(1): 70–109. doi: 10.1109/COMST.2020.3028247.
|
| [2] |
SINGYAP K and ALOUINI M S. Performance of UAV-assisted multiuser terrestrial-satellite communication system over mixed FSO/RF channels[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 781–796. doi: 10.1109/TAES.2021.3111787.
|
| [3] |
BRASHEARS T R. Achieving ⪆99% link uptime on a fleet of 100G space laser inter-satellite links in LEO[C]. Proceedings of SPIE 12877, Free-Space Laser Communications XXXVI, San Francisco, CA, USA, 2024: 1287702. doi: 10.1117/12.3005057.
|
| [4] |
许维翰, 周林杰, 陈建平. 硅基波导集成光学相控阵芯片—设计难点与突破(特邀)[J]. 光学学报, 2024, 44(15): 1513026. doi: 10.3788/AOS241072.
XU Weihan, ZHOU Linjie, and CHEN Jianping. Silicon-based waveguide integrated optical phased array chips for LiDAR: Design challenges and breakthroughs (invited)[J]. Acta Optica Sinica, 2024, 44(15): 1513026. doi: 10.3788/AOS241072.
|
| [5] |
LI Jie, LUO Ming, HU Leilei, et al. Real-time 200Gbps coherent PON based on silicon photonic integrated transceiver[C]. 2022 Asia Communications and Photonics Conference, Shenzhen, China, 2022: 957–960. doi: 10.1109/ACP55869.2022.10088953.
|
| [6] |
HE Jingwen, DONG Tao, and XU Yue. Review of photonic integrated optical phased arrays for space optical communication[J]. IEEE Access, 2020, 8: 188284–188298. doi: 10.1109/ACCESS.2020.3030627.
|
| [7] |
XUE Wenli, LIU Yichen, ZHU Xingwang, et al. A high-performance 10 mm diameter MEMS fast steering mirror with integrated piezoresistive angle sensors for laser inter-satellite links[J]. Microsystems & Nanoengineering, 2025, 11(1): 75. doi: 10.1038/s41378-025-00935-1.
|
| [8] |
WEN Zhidong, HOU Yu, CHEN Yang, et al. Improved acquisition performance of inter-satellite laser communication system through non-mechanical adaptive beam control[J]. Optics and Lasers in Engineering, 2025, 194: 109217. doi: 10.1016/j.optlaseng.2025.109217.
|
| [9] |
李锐, 林宝军, 刘迎春, 等. 激光星间链路发展综述: 现状、趋势、展望[J]. 红外与激光工程, 2023, 52(3): 20220393. doi: 10.3788/IRLA20220393.
LI Rui, LIN Baojun, LIU Yingchun, et al. Review on laser intersatellite link: Current status, trends, and prospects[J]. Infrared and Laser Engineering, 2023, 52(3): 20220393. doi: 10.3788/IRLA20220393.
|
| [10] |
GUELMAN M, KOGAN A, KAZARIAN A, et al. Acquisition and pointing control for inter-satellite laser communications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(4): 1239–1248. doi: 10.1109/TAES.2004.1386877.
|
| [11] |
侯霞, 刘哲绮, 常亦迪, 等. 卫星激光通信技术发展现状与趋势分析[J]. 中国激光, 2024, 51(11): 1101013. doi: 10.3788/CJL240448.
HOU Xia, LIU Zheqi, CHANG Yidi, et al. Analysis on development status and trend of space laser communication technology[J]. Chinese Journal of Lasers, 2024, 51(11): 1101013. doi: 10.3788/CJL240448.
|
| [12] |
LIU Cheng, WEN Feng, and FAN Feng. Pointing, acquisition, and tracking (PAT) technology for inter-satellite laser links[C]. Proceedings of SPIE 13492, AOPC 2024: Laser Technology and Applications, Beijing, China, 2024: 134920C. doi: 10.1117/12.3046162.
|
| [13] |
NIELSEN T T. Pointing, acquisition, and tracking system for the free-space laser communication system SILEX[C]. Proceedings of SPIE 2381, Free-Space Laser Communication Technologies VII, San Jose, CA, USA, 1995. doi: 10.1117/12.207403.
|
| [14] |
FIELDS R, LUNDE C, WONG R, et al. NFIRE-to-TerraSAR-X laser communication results: Satellite pointing, disturbances, and other attributes consistent with successful performance[C]. Proceedings of SPIE 7330, Sensors and Systems for Space Applications III, Orlando, FL, USA, 2009: 73300Q. doi: 10.1117/12.820393.
|
| [15] |
CARRASCO-CASADO A, SHIRATAMA K, TRINH P V, et al. Development of a miniaturized laser-communication terminal for small satellites[J]. Acta Astronautica, 2002, 197: 1–5. doi: 10.1016/j.actaastro.2022.05.011.
|
| [16] |
WANG Xuan, HAN Junfeng, WANG Chen, et al. Beam scanning and capture of micro laser communication terminal based on MEMS micromirrors[J]. Micromachines, 2023, 14(7): 1317. doi: 10.3390/mi14071317.
|
| [17] |
RÜDDENKLAU R, REIN F, ROUBAL C, et al. In-orbit demonstration of acquisition and tracking on OSIRIS4CubeSat[J]. Optics Express, 2024, 32(23): 41188–41200. doi: 10.1364/OE.537889.
|
| [18] |
ZHANG Furui, HAN Junfeng, and RUAN Ping. Beam pointing analysis and a novel coarse pointing assembly design in space laser communication[J]. Optik, 2019, 189: 130–147. doi: 10.1016/j.ijleo.2019.05.079.
|
| [19] |
MILLER E D, DESPENZA M, GAVRILYUK I, et al. A prototype coarse pointing mechanism for laser communication[C]. Proceedings of SPIE 10096, Free-Space Laser Communication and Atmospheric Propagation XXIX, San Francisco, CA, USA, 2017: 100960S. doi: 10.1117/12.2264086.
|
| [20] |
谭立英, 吴世臣, 韩琦琦, 等. 潜望镜式卫星光通信终端的CCD粗跟踪[J]. 光学 精密工程, 2012, 20(2): 270–276. doi: 10.3788/OPE.20122002.0270.
TAN Liying, WU Shichen, HAN Qiqi, et al. Coarse tracking of periscope-type satellite optical communication terminals[J]. Optics and Precision Engineering, 2012, 20(2): 270–276. doi: 10.3788/OPE.20122002.0270.
|
| [21] |
张家齐, 张立中, 董科研, 等. 二次成像型库德式激光通信终端粗跟踪技术[J]. 中国光学, 2018, 11(4): 644–653. doi: 10.3788/CO.20181104.0644.
ZHANG Jiaqi, ZHANG Lizhong, DONG Keyan, et al. Coarse tracking technology of secondary imaging Coude-type laser communication terminal[J]. Chinese Optics, 2018, 11(4): 644–653. doi: 10.3788/CO.20181104.0644.
|