| Citation: | ZHANG Yinhui, LIU Kai, HE Zifen, ZHANG Jinkai, CHEN Guangchen, MA Zhijian. Dynamic Wavelet Multi-Directional Perception and Geometry Axis-Solution Guided 3D CT Fracture Image Segmentation[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250732 |
| [1] |
JUTO H, NILSSON H, and MORBERG P. Epidemiology of adult ankle fractures: 1756 cases identified in Norrbotten County during 2009–2013 and classified according to AO/OTA[J]. BMC Musculoskeletal Disorders, 2018, 19(1): 441. doi: 10.1186/s12891-018-2326-x.
|
| [2] |
HARDALAÇ F, UYSAL F, PEKER O, et al. Fracture detection in wrist X-ray images using deep learning-based object detection models[J]. Sensors, 2022, 22(3): 1285. doi: 10.3390/s22031285.
|
| [3] |
BARG A, PAGENSTERT G I, HÜGLE T, et al. Ankle osteoarthritis: Etiology, diagnostics, and classification[J]. Foot and Ankle Clinics, 2013, 18(3): 411–426. doi: 10.1016/j.fcl.2013.06.001.
|
| [4] |
LI Mengnai, COLLIER R C, HILL B W, et al. Comparing different surgical techniques for addressing the posterior malleolus in supination external rotation ankle fractures and the need for syndesmotic screw fixation[J]. The Journal of Foot and Ankle Surgery, 2017, 56(4): 730–734. doi: 10.1053/j.jfas.2017.01.053.
|
| [5] |
ZHANG Qida, CHEN Zhenxian, PENG Yinghu, et al. The novel magnesium–titanium hybrid cannulated screws for the treatment of vertical femoral neck fractures: Biomechanical evaluation[J]. Journal of Orthopaedic Translation, 2023, 42: 127–136. doi: 10.1016/j.jot.2023.08.003.
|
| [6] |
SZYMAŃSKI T and ZDANOWICZ U. Comparison of routine computed tomography and plain X-ray imaging for malleolar fractures—How much do we miss?[J]. Foot and Ankle Surgery, 2022, 28(2): 263–268. doi: 10.1016/j.fas.2021.03.025.
|
| [7] |
ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: Learning dense volumetric segmentation from sparse annotation[C]. Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 2016: 424–432. doi: 10.1007/978-3-319-46723-8_49.
|
| [8] |
白静, 杨瞻源, 彭斌, 等. 三维卷积神经网络及其在视频理解领域中的应用研究[J]. 电子与信息学报, 2023, 45(6): 2273–2283. doi: 10.11999/JEIT220596.
BAI Jing, YANG Zhanyuan, PENG Bin, et al. Research on 3D convolutional neural network and its application on video understanding[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2273–2283. doi: 10.11999/JEIT220596.
|
| [9] |
LUO Xiaoling, WANG Wei, XU Yong, et al. A deep convolutional neural network for diabetic retinopathy detection via mining local and long‐range dependence[J]. CAAI Transactions on Intelligence Technology, 2024, 9(1): 153–166. doi: 10.1049/cit2.12155.
|
| [10] |
YAN Qingsen, LIU Shengqiang, XU Songhua, et al. 3D medical image segmentation using parallel transformers[J]. Pattern Recognition, 2023, 138: 109432. doi: 10.1016/j.patcog.2023.109432.
|
| [11] |
HUANG Yonghao, CHEN Leiting, ZHOU Chuan, et al. Model long-range dependencies for multi-modality and multi-view retinopathy diagnosis through transformers[J]. Knowledge-Based Systems, 2023, 271: 110544. doi: 10.1016/j.knosys.2023.110544.
|
| [12] |
CHEN Shuchao, LUO Cao, LIU Shanshan, et al. LD-UNet: A long-distance perceptual model for segmentation of blurred boundaries in medical images[J]. Computers in Biology and Medicine, 2024, 171: 108120. doi: 10.1016/j.compbiomed.2024.108120.
|
| [13] |
ZHANG Zhenguang, PENG Bo, and ZHAO Tingyu. An ultra-lightweight network combining Mamba and frequency-domain feature extraction for pavement tiny-crack segmentation[J]. Expert Systems with Applications, 2025, 264: 125941. doi: 10.1016/j.eswa.2024.125941.
|
| [14] |
HE Zhili, CHEN Wang, ZHANG Jian, et al. Crack segmentation on steel structures using boundary guidance model[J]. Automation in Construction, 2024, 162: 105354. doi: 10.1016/j.autcon.2024.105354.
|
| [15] |
CHU Honghu, WANG Wei, and DENG Lu. Tiny‐Crack‐Net: A multiscale feature fusion network with attention mechanisms for segmentation of tiny cracks[J]. Computer‐Aided Civil and Infrastructure Engineering, 2022, 37(14): 1914–1931. doi: 10.1111/mice.12881.
|
| [16] |
HUANG Yaqi, HU Ge, JI Changjin, et al. Glass-cutting medical images via a mechanical image segmentation method based on crack propagation[J]. Nature Communications, 2020, 11(1): 5669. doi: 10.1038/s41467-020-19392-7.
|
| [17] |
SUN Rui, LI Xuming, ZHANG Libing, et al. Wavelet-integrated deep neural network for deblurring and segmentation of crack images[J]. Mechanical Systems and Signal Processing, 2025, 224: 112240. doi: 10.1016/j.ymssp.2024.112240.
|
| [18] |
李文轩, 冯斌, 吴福理, 等. 基于纹理和几何特征融合的髁突骨微结构分割与预测[J]. 计算机辅助设计与图形学学报, 2025, 37(2): 340–348. doi: 10.3724/SP.J.1089.2023-00173.
LI Wenxuan, FENG Bin, WU Fuli, et al. Bone microstructure segmentation and prediction of condyle based on fusion of texture and geometric features[J]. Journal of Computer-Aided Design & Computer Graphics, 2025, 37(2): 340–348. doi: 10.3724/SP.J.1089.2023-00173.
|
| [19] |
WANG Kun, ZHANG Xiaohong, LU Yuting, et al. GSAL: Geometric structure adversarial learning for robust medical image segmentation[J]. Pattern Recognition, 2023, 140: 109596. doi: 10.1016/j.patcog.2023.109596.
|
| [20] |
ISENSEE F, JAEGER P F, KOHL S A A, et al. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation[J]. Nature Methods, 2021, 18(2): 203–211. doi: 10.1038/s41592-020-01008-z.
|
| [21] |
XIAO Ruoxiu, QI Siyu, REN Huayang, et al. Multi-objective constraints for path planning in screw fixation of scaphoid fractures[J]. Computers in Biology and Medicine, 2024, 182: 109163. doi: 10.1016/j.compbiomed.2024.109163.
|
| [22] |
LIU Jiaxuan, LI Haitao, ZENG Bolun, et al. An end-to-end geometry-based pipeline for automatic preoperative surgical planning of pelvic fracture reduction and fixation[J]. IEEE Transactions on Medical Imaging, 2025, 44(1): 79–91. doi: 10.1109/TMI.2024.3429403.
|
| [23] |
GU Hanxue, COLGLAZIER R, Dong Haoyu, et al. SegmentAnyBone: A universal model that segments any bone at any location on MRI[J]. Medical Image Analysis, 2025, 101: 103469. doi: 10.1016/j.media.2025.103469.
|
| [24] |
LU Xu, CUI Zengzhen, SUN Yihua, et al. Better rough than scarce: Proximal femur fracture segmentation with rough annotations[J]. IEEE Transactions on Medical Imaging, 2024, 43(9): 3240–3252. doi: 10.1109/TMI.2024.3392854.
|
| [25] |
ZHOU Hongyu, GUO Jiansen, ZHANG Yinghao, et al. nnFormer: Volumetric medical image segmentation via a 3D transformer[J]. IEEE Transactions on Image Processing, 2023, 32: 4036–4045. doi: 10.1109/TIP.2023.3293771.
|
| [26] |
SHAKER A, MAAZ M, RASHEED H, et al. UNETR++: Delving into efficient and accurate 3D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2024, 43(9): 3377–3390. doi: 10.1109/TMI.2024.3398728.
|
| [27] |
MA Jun, LI Feifei, and WANG Bo. U-mamba: Enhancing long-range dependency for biomedical image segmentation[J]. arXiv preprint arXiv: 2401.04722, 2024. doi: 10.48550/arXiv.2401.04722. (查阅网上资料,请核对文献类型及格式).
|
| [28] |
ZHOU Yanfeng, LI Lingrui, LU Le, et al. nnWNet: Rethinking the use of transformers in biomedical image segmentation and calling for a unified evaluation benchmark[C]. 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2025: 20852–20862. doi: 10.1109/CVPR52734.2025.01942.
|