Advanced Search
Turn off MathJax
Article Contents
ZHANG Yinhui, LIU Kai, HE Zifen, ZHANG Jinkai, CHEN Guangchen, MA Zhijian. Dynamic Wavelet Multi-Directional Perception and Geometry Axis-Solution Guided 3D CT Fracture Image Segmentation[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250732
Citation: ZHANG Yinhui, LIU Kai, HE Zifen, ZHANG Jinkai, CHEN Guangchen, MA Zhijian. Dynamic Wavelet Multi-Directional Perception and Geometry Axis-Solution Guided 3D CT Fracture Image Segmentation[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250732

Dynamic Wavelet Multi-Directional Perception and Geometry Axis-Solution Guided 3D CT Fracture Image Segmentation

doi: 10.11999/JEIT250732 cstr: 32379.14.JEIT250732
Funds:  The National Natural Science Foundation of China (62561032, 62171206, 62061022), Joint Special Project of Yunnan Provincial Department of Science and Technology and Kunming Medical University – ‘Digital Mechanics Simulation for Optimizing Internal Fixation of Ankle Fractures’ (202001AY070001-094), Kunming Municipal Health Commission Ten-Hundred-Thousand Talent Project (2021-SW(Reserve)-28), Kunming Municipal Health Commission Medical Technology Center Project (2022-SW(Tech)-15)
  • Accepted Date: 2025-12-12
  • Rev Recd Date: 2025-12-12
  • Available Online: 2025-12-19
  •   Objective  Accurate segmentation of fracture surfaces in 3D CT images is critical for orthopedic surgical planning, particularly in determining optimal nail insertion angles perpendicular to fracture planes. However, existing methods exhibit three key limitations: insufficient capture of deep global volumetric context, directional texture ambiguity in low-contrast fracture regions, and underutilization of geometric features decoding. To overcome these challenges, we propose DWAG-Net, a novel framework that integrates Dynamic Wavelet Perception and Geometry-Axis Guidance, to significantly enhance segmentation precision for complex tibial fractures and provide reliable 3D digital guidance for preoperative planning.  Methods  The architecture extends 3D nnU-Netv2 with three core innovations. First, the Dynamic Multi-View Aggregation (DMVA) module dynamically fuses tri-planar (axial/sagittal/coronal) and full-volume features via learnable parameter interpolation (optimized kernel size: 2×2×2) and channel-wise Hadamard product, enhancing global context modeling. Second, the Wavelet Direction Perception Enhancement (WDPE) module decomposes inputs using 3D Symlets discrete wavelet transform and applies direction-specific enhancement to eight subbands: adaptive convolutional kernels (e.g., [5,3,3] for depth-dominant fractures) amplify texture details in high-frequency subbands, while cross-subband fusion strategies integrate complementary features. Third, the Geometry Axis-Solution Guided (GASG) module embeds in decoders to enforce anatomical consistency by computing axis-level affinity maps (depth/height/width) that combine geometric similarity with spatial distance decay, and by optimizing boundary delineation through rotational positional encoding and multi-axis attention. The model was trained on the YN-TFS dataset (110 tibial fracture CT scans, resolution 0.39–1.00 mm) using SGD optimizer (lr=0.01, momentum=0.99) and a class-weighted loss (background:0.5, bone:1, fracture:5) to mitigate severe pixel imbalance.  Results and Discussions  DWAG-Net achieved state-of-the-art performance, with a mean Dice score of 71.20% (Table 1), surpassing nnU-Netv2 by 5.06% (fracture surface Dice: 69.48%, +7.12%). Boundary precision improved significantly, yielding a mean HD95 of 1.38 mm (fracture surface: 1.54 mm, –3.70 mm). Ablation studies (Table 2) confirmed each module’s contribution: DMVA improved Dice by 2.40% through adaptive multi-view fusion; WDPE resolved directional ambiguity, adding a 5.84% fracture-surface Dice gain; GASG provided a further 1.20% gain by enforcing geometric consistency. Key configurations included optimal DMVA parameters (2×2×2), Symlets wavelets, and sequential axis processing (D→H→W). Qualitatively, DWAG-Net preserved fracture integrity where U-Mamba/nnWNet failed and reduced over-segmentation compared with nnFormer/UNETR++ (Fig. 4).  Conclusions  DWAG-Net establishes a new state-of-the-art for 3D fracture segmentation by synergizing multi-directional wavelet perception and geometric guidance. Its key innovations—DMVA for volumetric context fusion, WDPE for directional texture enhancement, and GASG for anatomically consistent decoding—deliver clinically critical precision (71.20% Dice, 1.38 mm HD95) and enable data-driven surgical planning. Future work will focus on optimizing loss functions for severe class imbalance.
  • loading
  • [1]
    JUTO H, NILSSON H, and MORBERG P. Epidemiology of adult ankle fractures: 1756 cases identified in Norrbotten County during 2009–2013 and classified according to AO/OTA[J]. BMC Musculoskeletal Disorders, 2018, 19(1): 441. doi: 10.1186/s12891-018-2326-x.
    [2]
    HARDALAÇ F, UYSAL F, PEKER O, et al. Fracture detection in wrist X-ray images using deep learning-based object detection models[J]. Sensors, 2022, 22(3): 1285. doi: 10.3390/s22031285.
    [3]
    BARG A, PAGENSTERT G I, HÜGLE T, et al. Ankle osteoarthritis: Etiology, diagnostics, and classification[J]. Foot and Ankle Clinics, 2013, 18(3): 411–426. doi: 10.1016/j.fcl.2013.06.001.
    [4]
    LI Mengnai, COLLIER R C, HILL B W, et al. Comparing different surgical techniques for addressing the posterior malleolus in supination external rotation ankle fractures and the need for syndesmotic screw fixation[J]. The Journal of Foot and Ankle Surgery, 2017, 56(4): 730–734. doi: 10.1053/j.jfas.2017.01.053.
    [5]
    ZHANG Qida, CHEN Zhenxian, PENG Yinghu, et al. The novel magnesium–titanium hybrid cannulated screws for the treatment of vertical femoral neck fractures: Biomechanical evaluation[J]. Journal of Orthopaedic Translation, 2023, 42: 127–136. doi: 10.1016/j.jot.2023.08.003.
    [6]
    SZYMAŃSKI T and ZDANOWICZ U. Comparison of routine computed tomography and plain X-ray imaging for malleolar fractures—How much do we miss?[J]. Foot and Ankle Surgery, 2022, 28(2): 263–268. doi: 10.1016/j.fas.2021.03.025.
    [7]
    ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: Learning dense volumetric segmentation from sparse annotation[C]. Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 2016: 424–432. doi: 10.1007/978-3-319-46723-8_49.
    [8]
    白静, 杨瞻源, 彭斌, 等. 三维卷积神经网络及其在视频理解领域中的应用研究[J]. 电子与信息学报, 2023, 45(6): 2273–2283. doi: 10.11999/JEIT220596.

    BAI Jing, YANG Zhanyuan, PENG Bin, et al. Research on 3D convolutional neural network and its application on video understanding[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2273–2283. doi: 10.11999/JEIT220596.
    [9]
    LUO Xiaoling, WANG Wei, XU Yong, et al. A deep convolutional neural network for diabetic retinopathy detection via mining local and long‐range dependence[J]. CAAI Transactions on Intelligence Technology, 2024, 9(1): 153–166. doi: 10.1049/cit2.12155.
    [10]
    YAN Qingsen, LIU Shengqiang, XU Songhua, et al. 3D medical image segmentation using parallel transformers[J]. Pattern Recognition, 2023, 138: 109432. doi: 10.1016/j.patcog.2023.109432.
    [11]
    HUANG Yonghao, CHEN Leiting, ZHOU Chuan, et al. Model long-range dependencies for multi-modality and multi-view retinopathy diagnosis through transformers[J]. Knowledge-Based Systems, 2023, 271: 110544. doi: 10.1016/j.knosys.2023.110544.
    [12]
    CHEN Shuchao, LUO Cao, LIU Shanshan, et al. LD-UNet: A long-distance perceptual model for segmentation of blurred boundaries in medical images[J]. Computers in Biology and Medicine, 2024, 171: 108120. doi: 10.1016/j.compbiomed.2024.108120.
    [13]
    ZHANG Zhenguang, PENG Bo, and ZHAO Tingyu. An ultra-lightweight network combining Mamba and frequency-domain feature extraction for pavement tiny-crack segmentation[J]. Expert Systems with Applications, 2025, 264: 125941. doi: 10.1016/j.eswa.2024.125941.
    [14]
    HE Zhili, CHEN Wang, ZHANG Jian, et al. Crack segmentation on steel structures using boundary guidance model[J]. Automation in Construction, 2024, 162: 105354. doi: 10.1016/j.autcon.2024.105354.
    [15]
    CHU Honghu, WANG Wei, and DENG Lu. Tiny‐Crack‐Net: A multiscale feature fusion network with attention mechanisms for segmentation of tiny cracks[J]. Computer‐Aided Civil and Infrastructure Engineering, 2022, 37(14): 1914–1931. doi: 10.1111/mice.12881.
    [16]
    HUANG Yaqi, HU Ge, JI Changjin, et al. Glass-cutting medical images via a mechanical image segmentation method based on crack propagation[J]. Nature Communications, 2020, 11(1): 5669. doi: 10.1038/s41467-020-19392-7.
    [17]
    SUN Rui, LI Xuming, ZHANG Libing, et al. Wavelet-integrated deep neural network for deblurring and segmentation of crack images[J]. Mechanical Systems and Signal Processing, 2025, 224: 112240. doi: 10.1016/j.ymssp.2024.112240.
    [18]
    李文轩, 冯斌, 吴福理, 等. 基于纹理和几何特征融合的髁突骨微结构分割与预测[J]. 计算机辅助设计与图形学学报, 2025, 37(2): 340–348. doi: 10.3724/SP.J.1089.2023-00173.

    LI Wenxuan, FENG Bin, WU Fuli, et al. Bone microstructure segmentation and prediction of condyle based on fusion of texture and geometric features[J]. Journal of Computer-Aided Design & Computer Graphics, 2025, 37(2): 340–348. doi: 10.3724/SP.J.1089.2023-00173.
    [19]
    WANG Kun, ZHANG Xiaohong, LU Yuting, et al. GSAL: Geometric structure adversarial learning for robust medical image segmentation[J]. Pattern Recognition, 2023, 140: 109596. doi: 10.1016/j.patcog.2023.109596.
    [20]
    ISENSEE F, JAEGER P F, KOHL S A A, et al. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation[J]. Nature Methods, 2021, 18(2): 203–211. doi: 10.1038/s41592-020-01008-z.
    [21]
    XIAO Ruoxiu, QI Siyu, REN Huayang, et al. Multi-objective constraints for path planning in screw fixation of scaphoid fractures[J]. Computers in Biology and Medicine, 2024, 182: 109163. doi: 10.1016/j.compbiomed.2024.109163.
    [22]
    LIU Jiaxuan, LI Haitao, ZENG Bolun, et al. An end-to-end geometry-based pipeline for automatic preoperative surgical planning of pelvic fracture reduction and fixation[J]. IEEE Transactions on Medical Imaging, 2025, 44(1): 79–91. doi: 10.1109/TMI.2024.3429403.
    [23]
    GU Hanxue, COLGLAZIER R, Dong Haoyu, et al. SegmentAnyBone: A universal model that segments any bone at any location on MRI[J]. Medical Image Analysis, 2025, 101: 103469. doi: 10.1016/j.media.2025.103469.
    [24]
    LU Xu, CUI Zengzhen, SUN Yihua, et al. Better rough than scarce: Proximal femur fracture segmentation with rough annotations[J]. IEEE Transactions on Medical Imaging, 2024, 43(9): 3240–3252. doi: 10.1109/TMI.2024.3392854.
    [25]
    ZHOU Hongyu, GUO Jiansen, ZHANG Yinghao, et al. nnFormer: Volumetric medical image segmentation via a 3D transformer[J]. IEEE Transactions on Image Processing, 2023, 32: 4036–4045. doi: 10.1109/TIP.2023.3293771.
    [26]
    SHAKER A, MAAZ M, RASHEED H, et al. UNETR++: Delving into efficient and accurate 3D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2024, 43(9): 3377–3390. doi: 10.1109/TMI.2024.3398728.
    [27]
    MA Jun, LI Feifei, and WANG Bo. U-mamba: Enhancing long-range dependency for biomedical image segmentation[J]. arXiv preprint arXiv: 2401.04722, 2024. doi: 10.48550/arXiv.2401.04722. (查阅网上资料,请核对文献类型及格式).
    [28]
    ZHOU Yanfeng, LI Lingrui, LU Le, et al. nnWNet: Rethinking the use of transformers in biomedical image segmentation and calling for a unified evaluation benchmark[C]. 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2025: 20852–20862. doi: 10.1109/CVPR52734.2025.01942.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(7)

    Article Metrics

    Article views (51) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return