| Citation: | CHEN Xiaohe, ZHANG Jiaang, LI Lingzhi, LI Guixiu, OU Zirong, BAO Yuehua, LIU Xinxin, YU Qiuchen, MA Yuhan, ZHAO Keyu, BAI Hua. Hierarchical Fusion Multi-Instance Learning for Weakly Supervised Pathological Image Classification[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250726 |
| [1] |
HAN Bingfeng, ZHENG Rongshou, ZENG Hongmei, et al. Cancer incidence and mortality in China, 2022[J]. Journal of the National Cancer Center, 2024, 4(1): 47–53. doi: 10.1016/j.jncc.2024.01.006.
|
| [2] |
姜梦琦, 韩昱晨, 傅小龙. 基于人工智能的H-E染色全切片病理学图像分析在肺癌研究中的进展[J]. 中国癌症杂志, 2024, 34(3): 306–315. doi: 10.19401/j.cnki.1007-3639.2024.03.009.
JIANG Mengqi, HAN Yuchen, and FU Xiaolong. Research progress on H-E stained whole slide image analysis by artificial intelligence in lung cancer[J]. China Oncology, 2024, 34(3): 306–315. doi: 10.19401/j.cnki.1007-3639.2024.03.009.
|
| [3] |
王钰萌, 刘振丙, 刘再毅. 隐私保护的联邦弱监督组织病理学亚型分类方法[J/OL]. https://jeit.ac.cn/cn/article/doi/10.11999/JEIT250842, 2025.
WANG Yumeng, LIU Zhenbing, and LIU Zaiyi. Privacy-preserving federated weakly-supervised learning for cancer subtyping on histopathology images[J/OL]. https://jeit.ac.cn/cn/article/doi/10.11999/JEIT250842, 2025.
|
| [4] |
金怀平, 薛飞跃, 李振辉, 等. 基于病理图像集成深度学习的胃癌预后预测方法[J]. 电子与信息学报, 2023, 45(7): 2623–2633. doi: 10.11999/JEIT220655.
JIN H P, XUE F Y, LI Z H, et al. Prognostic prediction of gastric cancer based on ensemble deep learning of pathological images[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2623–2633. doi: 10.11999/JEIT220655.
|
| [5] |
FEI Manman, ZHANG Xin, CHEN Dongdong, et al. Whole slide cervical cancer classification via graph attention networks and contrastive learning[J]. Neurocomputing, 2025, 613: 128787. doi: 10.1016/j.neucom.2024.128787.
|
| [6] |
ZHANG Jiawei, SUN Zhanquan, WANG Kang, et al. Prognosis prediction based on liver histopathological image via graph deep learning and transformer[J]. Applied Soft Computing, 2024, 161: 111653. doi: 10.1016/j.asoc.2024.111653.
|
| [7] |
LI Mingze, ZHANG Bingbing, SUN Jian, et al. Weakly supervised breast cancer classification on WSI using transformer and graph attention network[J]. International Journal of Imaging Systems and Technology, 2024, 34(4): e23125. doi: 10.1002/ima.23125.
|
| [8] |
WANG Fuying, XIN Jiayi, ZHAO Weiqin, et al. TAD-graph: Enhancing whole slide image analysis via task-aware subgraph disentanglement[J]. IEEE Transactions on Medical Imaging, 2025, 44(6): 2683–2695. doi: 10.1109/TMI.2025.3545680.
|
| [9] |
WU Kun, JIANG Zhiguo, TANG Kunming, et al. Pan-cancer histopathology WSI pre-training with position-aware masked autoencoder[J]. IEEE Transactions on Medical Imaging, 2025, 44(4): 1610–1623. doi: 10.1109/TMI.2024.3513358.
|
| [10] |
张印辉, 张金凯, 何自芬, 等. 全局感知与稀疏特征关联图像级弱监督病理图像分割[J]. 电子与信息学报, 2024, 46(9): 3672–3682. doi: 10.11999/JEIT240364.
ZHANG Yinhui, ZHANG Jinkai, HE Zifen, et al. Global perception and sparse feature associate image-level weakly supervised pathological image segmentation[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3672–3682. doi: 10.11999/JEIT240364.
|
| [11] |
YAN Rui, LV Zhilong, YANG Zhidong, et al. Sparse and hierarchical transformer for survival analysis on whole slide images[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(1): 7–18. doi: 10.1109/JBHI.2023.3307584.
|
| [12] |
MA Yingfan, LUO Xiaoyuan, FU Kexue, et al. Transformer-based video-structure multi-instance learning for whole slide image classification[C]. Proceedings of the 38th AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2024: 14263–14271. doi: 10.1609/aaai.v38i13.29338.
|
| [13] |
ILSE M, TOMCZAK J, and WELLING M. Attention-based deep multiple instance learning[C]. Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 2127–2136.
|
| [14] |
LU M Y, WILLIAMSON D F K, CHEN T Y, et al. Data-efficient and weakly supervised computational pathology on whole-slide images[J]. Nature Biomedical Engineering, 2021, 5(6): 555–570. doi: 10.1038/s41551-020-00682-w.
|
| [15] |
SHAO Zhuchen, BIAN Hao, CHEN Yang, et al. TransMIL: Transformer based correlated multiple instance learning for whole slide image classification[C]. Proceedings of the 35th International Conference on Neural Information Processing Systems, 2021: 164. (查阅网上资料, 未找到本条文献出版地信息, 请确认).
|
| [16] |
ZHANG Hongrun, MENG Yanda, ZHAO Yitian, et al. DTFD-MIL: Double-tier feature distillation multiple instance learning for histopathology whole slide image classification[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 18780–18790. doi: 10.1109/CVPR52688.2022.01824.
|
| [17] |
LI Bin, LI Yin, and ELICEIRI K W. Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 14313–14323. doi: 10.1109/CVPR46437.2021.01409.
|
| [18] |
CHEN Y C and LU C S. RankMix: Data augmentation for weakly supervised learning of classifying whole slide images with diverse sizes and imbalanced categories[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 23936–23945. doi: 10.1109/CVPR52729.2023.02292.
|
| [19] |
LIU Pei, JI Luping, ZHANG Xinyu, et al. Pseudo-bag mixup augmentation for multiple instance learning-based whole slide image classification[J]. IEEE Transactions on Medical Imaging, 2024, 43(5): 1841–1852. doi: 10.1109/TMI.2024.3351213.
|
| [20] |
YANG Jiawei, CHEN Hanbo, ZHAO Yu, et al. ReMix: A general and efficient framework for multiple instance learning based whole slide image classification[C]. Proceedings of the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, Singapore, Singapore, 2022: 35–45. doi: 10.1007/978-3-031-16434-7_4.
|
| [21] |
BEJNORDI B E, VETA M, VAN DIEST P J, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer[J]. JAMA, 2017, 318(22): 2199–2210. doi: 10.1001/jama.2017.14585.
|
| [22] |
TOMCZAK K, CZERWIŃSKA P, and WIZNEROWICZ M. The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge[J]. Contemporary Oncology, 2015, 19(1A): A68–A77. doi: 10.5114/wo.2014.47136.
|
| [23] |
ZHOU S K, RUECKERT D, and FICHTINGER G. Handbook of Medical Image Computing and Computer Assisted Intervention[M]. London: Academic Press, 2020: 521–546.
|
| [24] |
LOU Wei, LI Guanbin, WAN Xiang, et al. Multi-modal denoising diffusion pre-training for whole-slide image classification[C]. Proceedings of the 32nd ACM International Conference on Multimedia, Melbourne, Australia, 2024: 10804–10813. doi: 10.1145/3664647.3680882.
|