| Citation: | LI Chaohao, WANG Haoran, ZHOU Shaopeng, YAN Haonan, ZHANG Feng, LU Tianyang, XI Ning, WANG Bin. LLM-based Data Compliance Checking for IoT Scenarios[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250704 |
| [1] |
陈磊. 隐私合规视角下数据安全建设的思考与实践[J]. 保密科学技术, 2020(4): 39–46.
CHEN Lei. Thoughts and practices on data security construction from a privacy compliance perspective[J]. Secrecy Science and Technology, 2020(4): 39–46. (查阅网上资料, 未找到本条文献英文翻译信息, 请确认).
|
| [2] |
王融. 《欧盟数据保护通用条例》详解[J]. 大数据, 2016, 2(4): 93–101. doi: 10.11959/j.issn.2096-0271.2016045.
WANG Rong. Deconstructing the EU general data protection regulation[J]. Big Data Research, 2016, 2(4): 93–101. doi: 10.11959/j.issn.2096-0271.2016045.
|
| [3] |
安鹏, 喻波, 江为强, 等. 面向多样性数据安全合规检测系统的设计[J]. 信息安全研究, 2024, 10(7): 658–667. doi: 10.12379/j.issn.2096-1057.2024.07.09.
AN Peng, YU Bo, JIANG Weiqiang, et al. Design of diversity data security compliance detection system[J]. Journal of Information Security Research, 2024, 10(7): 658–667. doi: 10.12379/j.issn.2096-1057.2024.07.09.
|
| [4] |
WANG Lun, KHAN U, NEAR J, et al. PrivGuard: Privacy regulation compliance made easier[C]. 31st USENIX Security Symposium (USENIX Security 22), Boston, USA, 2022: 3753–3770.
|
| [5] |
李昕, 唐鹏, 张西珩, 等. 面向GDPR隐私政策合规性的智能化检测方法[J]. 网络与信息安全学报, 2023, 9(6): 127–139. doi: 10.11959/j.issn.2096-109x.2023088.
LI Xin, TANG Peng, ZHANG Xiheng, et al. GDPR-oriented intelligent checking method of privacy policies compliance[J]. Chinese Journal of Network and Information Security, 2023, 9(6): 127–139. doi: 10.11959/j.issn.2096-109x.2023088.
|
| [6] |
郭群, 张华熊, 王波, 等. 基于内容和上下文的敏感个人信息实体识别方法[J]. 软件工程, 2025, 28(2): 6–9,26. doi: 10.19644/j.cnki.issn2096-1472.2025.002.002.
GUO Qun, ZHANG Huaxiong, WANG Bo, et al. Content and contextual sensitive personal information entity recognition method[J]. Software Engineering, 2025, 28(2): 6–9,26. doi: 10.19644/j.cnki.issn2096-1472.2025.002.002.
|
| [7] |
张西珩, 李昕, 唐鹏, 等. 基于知识图谱的隐私政策合规性检测与分析[J]. 网络与信息安全学报, 2024, 10(6): 151–163. doi: 10.11959/j.issn.2096-109x.2024087.
ZHANG Xiheng, LI Xin, TANG Peng, et al. Privacy policy compliance detection and analysis based on knowledge graph[J]. Chinese Journal of Network and Information Security, 2024, 10(6): 151–163. doi: 10.11959/j.issn.2096-109x.2024087.
|
| [8] |
MENG Weibin, LIU Ying, ZAITER F, et al. LogParse: Making log parsing adaptive through word classification[C]. 2020 29th International Conference on Computer Communications and Networks (ICCCN), Honolulu, USA, 2020: 1–9. doi: 10.1109/ICCCN49398.2020.9209681.
|
| [9] |
HE Pinjia, ZHU Jieming, ZHENG Zibin, et al. Drain: An online log parsing approach with fixed depth tree[C]. 2017 IEEE International Conference on Web Services (ICWS), Honolulu, USA, 2017: 33–40. doi: 10.1109/ICWS.2017.13.
|
| [10] |
DU Min, LI Feifei, ZHENG Guineng, et al. DeepLog: Anomaly detection and diagnosis from system logs through deep learning[C]. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, USA, 2017: 1285–1298. doi: 10.1145/3133956.3134015.
|
| [11] |
MENG Weibin, LIU Ying, ZHU Yichen, et al. Loganomaly: Unsupervised detection of sequential and quantitative anomalies in unstructured logs[C]. Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao China, 2019: 4739–4745.
|
| [12] |
ZHANG Xu, XU Yong, LIN Qingwei, et al. Robust log-based anomaly detection on unstable log data[C]. Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Tallinn Estonia, 2019: 807–817. doi: 10.1145/3338906.3338931.
|
| [13] |
BAI X, ZHU Y, QIAN Z, et al. PrivacyCheck: Automatic detection of privacy violations in network traffic[C]. Proc of the ACM on Measurement and Analysis of Computing Systems, New York, 2021: 1–23. (查阅网上资料, 未找到本条文献信息, 请确认).
|
| [14] |
QI Jiaxing, HUANG Shaohan, LUAN Zhongzhi, et al. LogGPT: Exploring ChatGPT for log-based anomaly detection[C]. 2023 IEEE International Conference on High Performance Computing & Communications, Data Science & Systems, Smart City & Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), Melbourne, Australia, 2023: 273–280. doi: 10.1109/HPCC-DSS-SmartCity-DependSys60770.2023.00045.
|
| [15] |
LIU Yilun, TAO Shimin, MENG Weibin, et al. LogPrompt: Prompt engineering towards zero-shot and interpretable log analysis[C]. Proceedings of the 2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings, Lisbon, Portugal, 2024: 364–365. doi: 10.1145/3639478.3643108.
|
| [16] |
XIANG Jinyu, ZHANG Jiayi, YU Zhaoyang, et al. Self-supervised prompt optimization[J]. arXiv preprint arXiv: 2502.06855, 2025. doi: 10.48550/arXiv.2502.06855. (查阅网上资料,不确定本文献类型是否正确,请确认).
|
| [17] |
GUAN Wei, CAO Jian, QIAN Shiyou, et al. LogLLM: Log-based anomaly detection using large language models[J]. arXiv preprint arXiv: 2411.08561, 2024. doi: 10.48550/arXiv.2411.08561. (查阅网上资料,不确定本文献类型是否正确,请确认).
|
| [18] |
ELHAFSI A, SINHA R, AGIA C, et al. Semantic anomaly detection with large language models[J]. Autonomous Robots, 2023, 47(8): 1035–1055. doi: 10.1007/s10514-023-10132-6.
|
| [19] |
YANG Tiankai, NIAN Yi, LI Li, et al. AD-LLM: Benchmarking large language models for anomaly detection[C]. Findings of the Association for Computational Linguistics: ACL 2025, Vienna, Austria, 2025: 1524–1547. doi: 10.18653/v1/2025.findings-acl.79.
|
| [20] |
OLINER A and STEARLEY J. What supercomputers say: A study of five system logs[C]. 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07), Edinburgh, UK, 2007: 575–584. doi: 10.1109/DSN.2007.103.
|
| [21] |
DEVLIN J, CHANG Mingwei, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, 2019: 4171–4186. doi: 10.18653/v1/N19-1423.
|
| [22] |
WEI J, WANG Xuezhi, SCHUURMANS D, et al. Chain-of-thought prompting elicits reasoning in large language models[C]. Proceedings of the 36th International Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 1800.
|
| [23] |
BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]. Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 159.
|
| [24] |
BAI Jinze, BAI Shuai, CHU Yunfei, et al. Qwen technical report[J]. arXiv preprint arXiv: 2309.16609, 2023. doi: 10.48550/arXiv.2309.16609. (查阅网上资料,不确定本文献类型是否正确,请确认).
|
| [25] |
CLOUD A. Qwen technical report[R]. arXiv preprint arXiv: 2406.12784, 2024. (查阅网上资料, 未找到本条文献信息, 请确认).
|
| [26] |
GUO Daya, YANG Dejian, ZHANG Haowei, et al. DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning[J]. arXiv preprint arXiv: 2501.12948, 2025. doi: 10.48550/arXiv.2501.12948. (查阅网上资料,不确定本文献类型是否正确,请确认).
|
| [27] |
HOLTZMAN A, BUYS J, DU Li, et al. The curious case of neural text degeneration[J]. arXiv preprint arXiv: 1904.09751, 2019. doi: 10.48550/arXiv.1904.09751. (查阅网上资料,不确定本文献类型是否正确,请确认).
|
| [28] |
XIAO Chaojun, CAI Jie, ZHAO Weilin, et al. Densing law of LLMs[J]. arXiv preprint arXiv: 2412.04315, 2024. doi: 10.48550/arXiv.2412.04315. (查阅网上资料,不确定本文献类型是否正确,请确认).
|
| [29] |
KAPLAN J, MCCANDLISH S, HENIGHAN T, et al. Scaling laws for neural language models[J]. arXiv preprint arXiv: 2001.08361, 2020. doi: 10.48550/arXiv.2001.08361. (查阅网上资料,不确定本文献类型是否正确,请确认).
|
| [30] |
WU Jun, WEN Jiangtao, and HAN Yuxing. BackSlash: Rate constrained optimized training of large language models[J]. arXiv preprint arXiv: 2504.16968, 2025. doi: 10.48550/arXiv.2504.16968. (查阅网上资料,不确定本文献类型是否正确,请确认).
|